Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(3)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37797601

RESUMEN

The purpose of this study was to fabricate a force sensor. A novel three-dimensional carbon-based material called a carbon nano-flake ball (CNFB) was used because it exhibits a large surface-area and high electrical conductivity. Moreover, CNFB can be easily fabricated using a one-step process via microwave plasma chemical vapor deposition. In the present study, two different methods, chemical and mechanical exfoliation, were used to fabricate the CNFB thin films. CNFEs were successfully synthesized on the silicon-based composite substrate. The substrate was constructed by the Si, SiO2, and Al2O3, where Al2O3played the role of the substrate for the force sensor while SiO2was the interface layer and was removed in the process by hydrogen fluoride (HF) solution to separate Al2O3from Silicon. The experiments showed that using sol-gel catalyst coating as pretreatment precursor, results in a larger ball-size but lower deposition density of CNFB on Al2O3substrate. By using mechanical exfoliation by polyimide (PI) tape, the CNFB grown on silicon substrate can be easily exfoliated from the substrate. PI/CNFB was successfully exfoliated from the substrate with a silver-grey color at the bottom of the CNFB which is likely to be silicon carbide (SiC) from the energy dispersive spectrometer analysis. The sheet resistance of PI/CNFB was 18.3 ± 1.0 Ω sq.-1PI/CNFB exhibits a good force sensing performance with good stability after 10 times of loading-unloading cycles and a good sensitivity of 11.6 Ω g-1.

2.
Oncogene ; 41(20): 2833-2845, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35418692

RESUMEN

Dysregulation of pericellular proteolysis is strongly implicated in cancer metastasis through alteration of cell invasion and the microenvironment. Matriptase-2 (MT-2) is a membrane-anchored serine protease which can suppress prostate cancer (PCa) cell invasion. In this study, we showed that MT-2 was down-regulated in PCa and could suppress PCa cell motility, tumor growth, and metastasis. Using microarray and biochemical analysis, we found that MT-2 shifted TGF-ß action towards its tumor suppressor function by repressing epithelial-to-mesenchymal transition (EMT) and promoting Smad2 phosphorylation and nuclear accumulation to upregulate two TGF-ß1 downstream effectors (p21 and PAI-1), culminating in hindrance of PCa cell motility and malignant growth. Mechanistically, MT-2 could dramatically up-regulate the expression of nuclear receptor NR4A3 via iron metabolism in PCa cells. MT-2-induced NR4A3 further coactivated Smad2 to activate p21 and PAI-1 expression. In addition, NR4A3 functioned as a suppressor of PCa and mediated MT-2 signaling to inhibit PCa tumorigenesis and metastasis. These results together indicate that NR4A3 sustains MT-2 signaling to suppress PCa cell invasion, tumor growth, and metastasis, and serves as a contextual factor for the TGF-ß/Smad2 signaling pathway in favor of tumor suppression via promoting p21 and PAI-1 expression.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de la Membrana , Neoplasias de la Próstata , Receptores de Esteroides , Receptores de Hormona Tiroidea , Serina Endopeptidasas , Línea Celular Tumoral , Movimiento Celular , Proteínas de Unión al ADN/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Invasividad Neoplásica , Inhibidor 1 de Activador Plasminogénico , Próstata/patología , Neoplasias de la Próstata/patología , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Serina Endopeptidasas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral
3.
Oncogene ; 39(37): 5950-5963, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32778768

RESUMEN

TMPRSS2 is an important membrane-anchored serine protease involved in human prostate cancer progression and metastasis. A serine protease physiologically often comes together with a cognate inhibitor for execution of proteolytically biologic function; however, TMPRSS2's cognate inhibitor is still elusive. To identify the cognate inhibitor of TMPRSS2, in this study, we applied co-immunoprecipitation and LC/MS/MS analysis and isolated hepatocyte growth factor activator inhibitors (HAIs) to be potential inhibitor candidates for TMPRSS2. Moreover, the recombinant HAI-2 proteins exhibited a better inhibitory effect on TMPRSS2 proteolytic activity than HAI-1, and recombinant HAI-2 proteins had a high affinity to form a complex with TMPRSS2. The immunofluorescence images further showed that TMPRSS2 was co-localized to HAI-2. Both KD1 and KD2 domain of HAI-2 showed comparable inhibitory effects on TMPRSS2 proteolytic activity. In addition, HAI-2 overexpression could suppress the induction effect of TMPRSS2 on pro-HGF activation, extracellular matrix degradation and prostate cancer cell invasion. We further determined that the expression levels of TMPRSS2 were inversely correlated with HAI-2 levels during prostate cancer progression. In orthotopic xenograft animal model, TMPRSS2 overexpression promoted prostate cancer metastasis, and HAI-2 overexpression efficiently blocked TMPRSS2-induced metastasis. In summary, the results together indicate that HAI-2 can function as a cognate inhibitor for TMPRSS2 in human prostate cancer cells and may serve as a potential factor to suppress TMPRSS2-mediated malignancy.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Serina Endopeptidasas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Masculino , Glicoproteínas de Membrana/química , Invasividad Neoplásica , Neoplasias de la Próstata/etiología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Proteolisis
5.
Oncogene ; 38(28): 5580-5598, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31152147

RESUMEN

Gram-negative bacteria have been found to be a major population in prostatitis and prostate cancer (PCa) tissues. Lipopolysaccharide (LPS), a major compound of Gram-negative bacteria, with stimulatory activities in some cancer types, but has not been fully studied in PCa. In this study, we examined the effect of LPS on the invasion of PCa cells. Interestingly, LPS can enhance the invasiveness of PCa, but had no significant effect on PCa cell viability. Using protease inhibitor screening and biochemical analyses, matriptase, a member of the membrane-anchored serine protease family, is found to play a key role in LPS-induced PCa cell invasion. Mechanistically, Toll-like receptor 4 (TLR4, LPS receptor)-sphingosine kinase 1 (SphK1) signaling underlies LPS-induced matriptase activation and PCa cell invasion. Specifically, LPS induced the S225 phosphorylation of SphK1 and the translocation of SphK1 to plasma membrane, leading to the production of sphingosine 1-phosphate (S1P), ERK1/2 and matriptase activation via S1P receptor 4 (S1PR4). This phenomenon is further validated using the patient-derived explant (PDE) model. Indeed, there is a significant correlation among the elevated SphK1 levels, the Gleason grades of PCa specimens, and the poor survival of PCa patients. Taken together, this study demonstrates a potential impact of LPS on PCa progression. Our results provide not only a new finding of the role of bacterial infection in PCa progression but also potential therapeutic target(s) associated with PCa metastasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Polisacáridos/farmacología , Neoplasias de la Próstata/patología , Serina Endopeptidasas/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Progresión de la Enfermedad , Activación Enzimática , Humanos , Masculino , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo
6.
Br J Cancer ; 120(5): 499-511, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30765871

RESUMEN

BACKGROUND: Dysregulation of pericellular proteolysis usually accounts for cancer cell invasion and metastasis. Isolation of a cell-surface protease system for lung cancer metastasis is an important issue for mechanistic studies and therapeutic target identification. METHODS: Immunohistochemistry of a tissue array (n = 64) and TCGA database (n = 255) were employed to assess the correlation between serine protease inhibitors (SPIs) and lung adenocarcinoma progression. The role of SPI in cell motility was examined using transwell assays. Pulldown and LC/MS/MS were performed to identify the SPI-modulated novel protease(s). A xenografted mouse model was harnessed to demonstrate the role of the SPI in lung cancer metastasis. RESULTS: Hepatocyte growth factor activator inhibitor-2 (HAI-2) was identified to be downregulated following lung cancer progression, which was related to poor survival and tumour invasion. We further isolated a serum-derived serine protease, plasmin, to be a novel target of HAI-2. Downregulation of HAI-2 promotes cell surface plasmin activity, EMT, and cell motility. HAI-2 can suppress plasmin-mediated activations of HGF and TGF-ß1, EMT and cell invasion. In addition, downregulated HAI-2 increased metastasis of lung adenocarcinoma via upregulating plasmin activity. CONCLUSION: HAI-2 functions as a novel inhibitor of plasmin to suppress lung cancer cell motility, EMT and metastasis.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Fibrinolisina/metabolismo , Neoplasias Pulmonares/metabolismo , Glicoproteínas de Membrana/metabolismo , Células A549 , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/secundario , Animales , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Fibrinolisina/antagonistas & inhibidores , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Neoplasias Pulmonares/patología , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Factor de Crecimiento Transformador beta1/metabolismo
7.
Materials (Basel) ; 11(10)2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30321988

RESUMEN

In spite of all the efforts towards deciphering the silk spinning process of spiders, the underlying mechanism is yet to be fully revealed. In this research, we designed a novel approach that allowed us to quantitatively evaluate the concentration change of silk dope during the liquid-to-solid spinning process of the orb-weaver Nephila pilipes. As a prior characterization of the optimal silking conditions, we first gauged the influence of silking-rate, ranging from 1.5 to 8.0 m/min, on dragline silk diameters and silk tensile strengths obtained from the spiders. Next, to evaluate the liquid content of the silk dope, the major ampullate gland was dissected and the concentration of the sac portion was measured by thermogravimetric analysis (TGA). The solid content of the dragline fibers leaving the spinneret was investigated by calculating the ratio of collected dried silk to the weight loss of the spider recorded in situ upon spinning. As the results indicate, the tensile strength and diameter of the spun dragline fibers were 800⁻1100 MPa and 8⁻11 µm, respectively. The liquid content of silk stored in the major ampullate sac (50.0 wt%) was significantly lower than that of silk leaving the spinnerets (80.9⁻96.1 wt%), indicating that a liquid supplying mechanism might be involved during the spinning process. This reveals, for the first time, quantitative evidence in support of the lubricative hypothesis proposed formerly, namely that a liquid coating layer is supplemented to compensate for silking resistance during the spinning process of a spider. The spigot, at the exit of the spinneret, is speculated to serve as a valve-like controller that regulates the lubrication process along with fiber formation. Taken together, these findings provide understanding of the physiological functions in the spider spinning process and could further shed some light on the future biomimetic development of silk material fabrication.

8.
Sci Rep ; 7(1): 15101, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118397

RESUMEN

Dysregulation of pericellular proteolysis is often required for tumor invasion and cancer progression. It has been shown that down-regulation of hepatocyte growth factor activator inhibitor-2 (HAI-2) results in activation of matriptase (a membrane-anchored serine protease), human prostate cancer cell motility and tumor growth. In this study, we further characterized if HAI-2 was a cognate inhibitor for matriptase and identified which Kunitz domain of HAI-2 was required for inhibiting matriptase and human prostate cancer cell motility. Our results show that HAI-2 overexpression suppressed matriptase-induced prostate cancer cell motility. We demonstrate that HAI-2 interacts with matriptase on cell surface and inhibits matriptase proteolytic activity. Moreover, cellular HAI-2 harnesses its Kunitz domain 1 (KD1) to inhibit matriptase activation and prostate cancer cell motility although recombinant KD1 and KD2 of HAI-2 both show an inhibitory activity and interaction with matriptase protease domain. The results together indicate that HAI-2 is a cognate inhibitor of matriptase, and KD1 of HAI-2 plays a major role in the inhibition of cellular matritptase activation as well as human prostate cancer invasion.


Asunto(s)
Movimiento Celular , Glicoproteínas de Membrana/metabolismo , Dominios Proteicos , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ratones Endogámicos BALB C , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteolisis , Interferencia de ARN , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/genética , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/metabolismo
9.
J Cell Biochem ; 117(4): 881-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26365534

RESUMEN

Ketamine, a dissociative anesthetic, is misused and abused worldwide as an illegal recreational drug. In addition to its neuropathic toxicity, ketamine abuse has numerous effects, including renal failure; however, the underlying mechanism is poorly understood. The process called epithelial phenotypic changes (EPCs) causes the loss of cell-cell adhesion and cell polarity in renal diseases, as well as the acquisition of migratory and invasive properties. Madin-Darby canine kidney cells, an in vitro cell model, were subjected to experimental manipulation to investigate whether ketamine could promote EPCs. Our data showed that ketamine dramatically decreased transepithelial electrical resistance and increased paracellular permeability and junction disruption, which were coupled to decreased levels of apical junctional proteins (ZO-1, occludin, and E-cadherin). Consistent with the downregulation of epithelial markers, the mesenchymal markers N-cadherin, fibronectin, and vimentin were markedly upregulated following ketamine stimulation. Of the E-cadherin repressor complexes tested, the mRNA levels of Snail, Slug, Twist, and ZEB1 were elevated. Moreover, ketamine significantly enhanced migration and invasion. Ketamine-mediated changes were at least partly caused by the inhibition of GSK-3ß activity through Ser-9 phosphorylation by the PI3K/Akt pathway. Inhibiting PI3K/Akt with LY294002 reactivated GSK-3ß and suppressed ketamine-enhanced permeability, EPCs, and motility. These findings were recapitulated by the inactivation of GSK-3ß using the inhibitor 3F8. Taken together, these results provide evidence that ketamine induces renal distal tubular EPCs through the downregulation of several junction proteins, the upregulation of mesenchymal markers, the activation of Akt, and the inactivation of GSK-3ß.


Asunto(s)
Analgésicos/farmacología , Membrana Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/genética , Ketamina/farmacología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Perros , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Uniones Intercelulares/efectos de los fármacos , Células de Riñón Canino Madin Darby , Ocludina/genética , Ocludina/metabolismo , Fenotipo , Transducción de Señal , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Vimentina/genética , Vimentina/metabolismo , Dedos de Zinc/genética , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
10.
Cancer Res ; 75(14): 2949-60, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26018085

RESUMEN

Dysregulation of androgen signaling and pericellular proteolysis is necessary for prostate cancer progression, but the links between them are still obscure. In this study, we show how the membrane-anchored serine protease TMPRSS2 stimulates a proteolytic cascade that mediates androgen-induced prostate cancer cell invasion, tumor growth, and metastasis. We found that matriptase serves as a substrate for TMPRSS2 in mediating this proinvasive action of androgens in prostate cancer. Further, we determined that higher levels of TMPRSS2 expression correlate with higher levels of matriptase activation in prostate cancer tissues. Lastly, we found that the ability of TMPRSS2 to promote prostate cancer tumor growth and metastasis was associated with increased matriptase activation and enhanced degradation of extracellular matrix nidogen-1 and laminin ß1 in tumor xenografts. In summary, our results establish that TMPRSS2 promotes the growth, invasion, and metastasis of prostate cancer cells via matriptase activation and extracellular matrix disruption, with implications to target these two proteases as a strategy to treat prostate cancer.


Asunto(s)
Andrógenos/farmacología , Matriz Extracelular/metabolismo , Neoplasias de la Próstata/patología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/fisiología , Animales , Células CHO , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cricetinae , Cricetulus , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Matriz Extracelular/patología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Serina Endopeptidasas/genética , Células Tumorales Cultivadas , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
11.
Am J Pathol ; 177(6): 3145-58, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20971737

RESUMEN

Deregulation of both ErbB-2 signaling and matriptase activity has been associated with human prostate cancer (PCa) progression. In this communication, we investigated the roles of both ErbB-2 signaling in matriptase zymogen activation and matriptase in ErbB-2-induced PCa malignancy. In a human PCa cell progression model, we observed that advanced PCa C-81 LNCaP cells exhibited an aggressive phenotype with increased cell migration and invasion capacity; these cells concurrently showed both enhanced ErbB-2 phosphorylation and increased matriptase zymogen activation compared with parental C-33 LNCaP cells. Moreover, ErbB2 activation, both ligand-dependent (eg, epidermal growth factor treatment) and ligand-independent (eg, overexpression), was able to induce matriptase zymogen activation in this cell line. Inhibition of ErbB-2 activity by either the specific inhibitor, AG825, in epidermal growth factor-treated C-33 LNCaP cells or ErbB-2 knockdown in C-81 LNCaP cells, reduced matriptase activation. These observations were confirmed by similar studies using both DU145 and PC3 cells. Together, these data suggest that ErbB-2 signaling plays an important role in matriptase zymogen activation. ErbB-2-enhanced matriptase activation was suppressed by a phosphatidylinositol 3-kinase inhibitor (ie, LY294002) but not by a MEK inhibitor (ie, PD98059). Suppression of matriptase expression by small hairpin RNA knockdown in ErbB-2-overexpressing LNCaP cells dramatically suppressed cancer cell invasion. In summary, our data indicate that ErbB-2 signaling via the phosphatidylinositol 3-kinase pathway results in up-regulated matriptase zymogen activity, which contributes to PCa cell invasion.


Asunto(s)
Carcinoma/patología , Genes erbB-2/fisiología , Neoplasias de la Próstata/patología , Serina Endopeptidasas/fisiología , Andrógenos/farmacología , Carcinoma/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Cultivadas , Progresión de la Enfermedad , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Activación Enzimática/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Neoplasias de la Próstata/genética , ARN Interferente Pequeño/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...