Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 21(1): 300, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633883

RESUMEN

Bacterial infections, especially those caused by drug-resistant bacteria, have seriously threatened human life and health. There is urgent to develop new antibacterial agents to reduce the problem of antibiotics. Biomedical materials with good antimicrobial properties have been widely used in antibacterial applications. Among them, hydrogels have become the focus of research in the field of biomedical materials due to their unique three-dimensional network structure, high hydrophilicity, and good biocompatibility. In this review, the latest research progresses about hydrogels in recent years were summarized, mainly including the preparation methods of hydrogels and their antibacterial applications. According to their different antibacterial mechanisms, several representative antibacterial hydrogels were introduced, such as antibiotics loaded hydrogels, antibiotic-free hydrogels including metal-based hydrogels, antibacterial peptide and antibacterial polymers, stimuli-responsive smart hydrogels, and light-mediated hydrogels. In addition, we also discussed the applications and challenges of antibacterial hydrogels in biomedicine, which are expected to provide new directions and ideas for the application of hydrogels in clinical antibacterial therapy.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Humanos , Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Hidrogeles/farmacología , Polímeros/farmacología
2.
Mater Today Bio ; 21: 100729, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37529216

RESUMEN

Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.

3.
J Vet Med Sci ; 84(1): 102-113, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34803084

RESUMEN

Among many of the pathogens, virus is the main cause of diseases in livestock and poultry. A host infected with the virus triggers a series of innate and adaptive immunity. The realization of innate immune responses involves the participation of a series of protein molecules in host cells, including receptors, signal molecules and antiviral molecules. Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular or viral deubiquitinases (DUBs). DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. In this review, we briefly introduce the mechanisms of ubiquitination and deubiquitination, present antiviral innate immune response and its regulation by ubiquitin, and summarize the prevalence of DUBs encoded by viruses (Arteriviridae, Asfarviridae, Nairoviridae, Coronaviridae, Herpesviridae, and Picornaviridae) infecting domestic animals and poultry. It is found that these DUBs suppress the innate immune responses mainly by affecting the production of type I interferon (IFN), which causes immune evasion of the viruses and promotes their replication. These findings have important reference significance for understanding the virulence and immune evasion mechanisms of the relevant viruses, and thus for the development of more effective prevention and treatment measures.


Asunto(s)
Antivirales , Ganado , Animales , Enzimas Desubicuitinizantes , Interacciones Huésped-Patógeno , Evasión Inmune , Inmunidad Innata , Aves de Corral , Replicación Viral
4.
Int J Mol Sci ; 20(9)2019 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31035338

RESUMEN

Ubiquitination and deubiquitination of cellular proteins are reciprocal reactions catalyzed by ubiquitination-related enzymes and deubiquitinase (DUB) which regulate almost all cellular processes. Marek's disease virus (MDV) encodes a viral DUB that plays an important role in the MDV pathogenicity. Chicken CD4+ T-cell lymphoma induced by MDV is a key contributor to multiple visceral tumors and immunosuppression of chickens with Marek's disease (MD). However, alterations in the ubiquitylome of MDV-induced T lymphoma cells are still unclear. In this study, a specific antibody against K-ε-GG was used to isolate ubiquitinated peptides from CD4+ T cells and MD T lymphoma cells. Mass spectrometry was used to compare and analyze alterations in the ubiquitylome. Our results showed that the ubiquitination of 717 and 778 proteins was significantly up- and downregulated, respectively, in T lymphoma cells. MDV up- and downregulated ubiquitination of a similar percentage of proteins. The ubiquitination of transferases, especially serine/threonine kinases, was the main regulatory target of MDV. Compared with CD4+ T cells of the control group, MDV mainly altered the ubiquitylome associated with the signal transduction, immune system, cancer, and infectious disease pathways in T lymphoma cells. In these pathways, the ubiquitination of CDK1, IL-18, PRKCB, ETV6, and EST1 proteins was significantly up- or downregulated as shown by immunoblotting. The current study revealed that the MDV infection could exert a significant influence on the ubiquitylome of CD4+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Enfermedad de Marek/inmunología , Enfermedad de Marek/metabolismo , Animales , Carcinogénesis/inmunología , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Pollos , Interleucina-18/metabolismo , Espectrometría de Masas
5.
PLoS One ; 12(11): e0186535, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29091922

RESUMEN

Deubiquitinases (DUBs) are essential regulators of intracellular processes involving ubiquitin (Ub) modification. The human DUB ubiquitin-specific protease 1 (hUSP1) interacts with human USP-associated factor 1 (hUAF1), and helps to regulate processes such as DNA damage repair. Previously, we identified a chicken USP1 homologue (chUSP1) during an investigation into the properties of Marek's disease virus (MDV). However, chUSP1's deubiquitination activity, interaction with chUAF1, and substrate specificity remained unknown. In the present study, we expressed and purified both chUAF1 and chUSP1 with or without putative catalytic core mutations using the Bac-to-Bac system, before investigating their deubiquitination activity and kinetics using various substrates. chUSP1 was shown to interact with chUAF1 both in cellular assays in which the two proteins were co-expressed, and in in vitro assays using purified proteins. Heterodimerization with chUAF1 increased the deubiquitination activity of chUSP1 up to 54-fold compared with chUSP1 alone. The chUSP1 mutants C91S, H603A, and D758A reduced the deubiquitination activity of the chUSP1/chUAF1 complex by 10-, 7-, and 33-fold, respectively, while the C91A and H594A chUSP1 mutants eliminated deubiquitination activity of the chUSP1/chUAF1 complex completely. This suggests that C91 and H594, but not D758, are essential for chUSP1 deubiquitination activity, and that a nucleophilic group at position 91 is needed for the deubiquitination reaction. The chUSP1/chUAF1 complex was found to have distinct substrate preferences; efficient hydrolysis of Ub dimers with K11-, K48-, and K63-linkages was seen, with weaker hydrolysis observed with K6-, K27-, and K33-linkages and no hydrolysis seen with a K29-linkage. Furthermore, other Ub-like substrates were disfavored by the complex. No activity was seen with SUMO1-GST, SUMO2- and SUMO3-dimers, ISG15-Rho, FAT10-Rho, or Ufm1-Rho, and only weak activity was observed with NEDD8-Rho. Overall, the data presented here characterize the activity and substrate preferences of chUSP1, and thus may facilitate future studies on its in vivo role.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitina/metabolismo , Animales , Dominio Catalítico , Pollos , Mutación , Proteínas Nucleares/genética , Unión Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...