Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MAbs ; 15(1): 2195517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37074212

RESUMEN

Single-chain fragment variable (scFv) domains play an important role in antibody-based therapeutic modalities, such as bispecifics, multispecifics and chimeric antigen receptor T cells or natural killer cells. However, scFv domains exhibit lower stability and increased risk of aggregation due to transient dissociation ("breathing") and inter-molecular reassociation of the two domains (VL and VH). We designed a novel strategy, referred to as stapling, that introduces two disulfide bonds between the scFv linker and the two variable domains to minimize scFv breathing. We named the resulting molecules stapled scFv (spFv). Stapling increased thermal stability (Tm) by an average of 10°C. In multiple scFv/spFv multispecifics, the spFv molecules display significantly improved stability, minimal aggregation and superior product quality. These spFv multispecifics retain binding affinity and functionality. Our stapling design was compatible with all antibody variable regions we evaluated and may be widely applicable to stabilize scFv molecules for designing biotherapeutics with superior biophysical properties.


Asunto(s)
Anticuerpos , Región Variable de Inmunoglobulina , Región Variable de Inmunoglobulina/química , Fragmentos de Inmunoglobulinas
2.
Cancer Chemother Pharmacol ; 89(4): 515-527, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35298699

RESUMEN

PURPOSE: Preclinical characterization of cetrelimab (JNJ-63723283), a fully humanized immunoglobulin G4 kappa monoclonal antibody targeting programmed cell death protein-1 (PD-1), in human cancer models. METHODS: Cetrelimab was generated by phage panning against human and cynomolgus monkey (cyno) PD-1 extracellular domains (ECDs) and affinity maturation. Binding to primate and rodent PD-1 ECDs, transfected and endogenous cell-surface PD-1, and inhibition of ligand binding were measured. In vitro activity was evaluated using cytomegalovirus recall, mixed lymphocyte reaction, staphylococcal enterotoxin B stimulation, and Jurkat-PD-1 nuclear factor of activated T cell reporter assays. In vivo activity was assessed using human PD-1 knock-in mice implanted with MC38 tumors and a lung patient-derived xenograft (PDX) model (LG1306) using CD34 cord-blood-humanized NSG mice. Pharmacodynamics, toxicokinetics, and safety were assessed in cynos following single and/or repeat intravenous dosing. RESULTS: Cetrelimab showed high affinity binding to human (1.72 nM) and cyno (0.90 nM) PD-1 and blocked binding of programmed death-ligand 1 (PD-L1; inhibitory concentration [IC] 111.7 ng/mL) and PD-L2 (IC 138.6 ng/mL). Cetrelimab dose-dependently increased T cell-mediated cytokine production and stimulated cytokine expression. Cetrelimab 10 mg/kg reduced mean MC38 tumor volume in PD-1 knock-in mice at Day 21 (P < 0.0001) versus control. In a PDX lung model, 10 mg/kg cetrelimab (every 5 days for six cycles) increased frequency of peripheral T cells and reduced (P < 0.05) mean tumor volume versus control. Activity was consistent with that of established PD-1 inhibitors. Cetrelimab dosing was well tolerated in cynos and mean drug exposure increase was dose-dependent. CONCLUSION: Cetrelimab potently inhibits PD-1 in vitro and in vivo, supporting its clinical evaluation.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Monoclonales , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Receptor de Muerte Celular Programada 1 , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Macaca fascicularis , Ratones , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores
3.
J Alzheimers Dis ; 77(4): 1397-1416, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32894244

RESUMEN

BACKGROUND: As a consequence of the discovery of an extracellular component responsible for the progression of tau pathology, tau immunotherapy is being extensively explored in both preclinical and clinical studies as a disease modifying strategy for the treatment of Alzheimer's disease. OBJECTIVE: Describe the characteristics of the anti-phospho (T212/T217) tau selective antibody PT3 and its humanized variant hPT3. METHODS: By performing different immunization campaigns, a large collection of antibodies has been generated and prioritized. In depth, in vitro characterization using surface plasmon resonance, phospho-epitope mapping, and X-ray crystallography experiments were performed. Further characterization involved immunohistochemical staining on mouse- and human postmortem tissue and neutralization of tau seeding by immunodepletion assays. RESULTS AND CONCLUSION: Various in vitro experiments demonstrated a high intrinsic affinity for PT3 and hPT3 for AD brain-derived paired helical filaments but also to non-aggregated phospho (T212/T217) tau. Further functional analyses in cellular and in vivo models of tau seeding demonstrated almost complete depletion of tau seeds in an AD brain homogenate. Ongoing trials will provide the clinical evaluation of the tau spreading hypothesis in Alzheimer's disease.


Asunto(s)
Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Monoclonales/metabolismo , Descubrimiento de Drogas/métodos , Proteínas tau/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales Humanizados/química , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Estructura Terciaria de Proteína , Proteínas tau/química
4.
Blood Adv ; 4(5): 906-919, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32150609

RESUMEN

CD33 is expressed in 90% of patients with acute myeloid leukemia (AML), and its extracellular portion consists of a V domain and a C2 domain. A recent study showed that a single nucleotide polymorphism (SNP), rs12459419 (C > T), results in the reduced expression of V domain-containing CD33 and limited efficacy of V domain-binding anti-CD33 antibodies. We developed JNJ-67571244, a novel human bispecific antibody capable of binding to the C2 domain of CD33 and to CD3, to induce T-cell recruitment and CD33+ tumor cell cytotoxicity independently of their SNP genotype status. JNJ-67571244 specifically binds to CD33-expressing target cells and induces cytotoxicity of CD33+ AML cell lines in vitro along with T-cell activation and cytokine release. JNJ-67571244 also exhibited statistically significant antitumor activity in vivo in established disseminated and subcutaneous mouse models of human AML. Furthermore, this antibody depletes CD33+ blasts in AML patient blood samples with concurrent T-cell activation. JNJ-67571244 also cross-reacts with cynomolgus monkey CD33 and CD3, and dosing of JNJ-67571244 in cynomolgus monkeys resulted in T-cell activation, transient cytokine release, and sustained reduction in CD33+ leukocyte populations. JNJ-67571244 was well tolerated in cynomolgus monkeys up to 30 mg/kg. Lastly, JNJ-67571244 mediated efficient cytotoxicity of cell lines and primary samples regardless of their SNP genotype status, suggesting a potential therapeutic benefit over other V-binding antibodies. JNJ-67571244 is currently in phase 1 clinical trials in patients with relapsed/refractory AML and high-risk myelodysplastic syndrome.


Asunto(s)
Leucemia Mieloide Aguda , Linfocitos T , Animales , Dominios C2 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Macaca fascicularis , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Linfocitos T/metabolismo
5.
Antibodies (Basel) ; 6(3)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31548527

RESUMEN

Engineering of fragment crystallizable (Fc) domains of therapeutic immunoglobulin (IgG) antibodies to eliminate their immune effector functions while retaining other Fc characteristics has numerous applications, including blocking antigens on Fc gamma (Fcγ) receptor-expressing immune cells. We previously reported on a human IgG2 variant termed IgG2σ with barely detectable activity in antibody-dependent cellular cytotoxicity, phagocytosis, complement activity, and Fcγ receptor binding assays. Here, we extend that work to IgG1 and IgG4 antibodies, alternative subtypes which may offer advantages over IgG2 antibodies. In several in vitro and in vivo assays, the IgG1σ and IgG4σ variants showed equal or even lower Fc-related activities than the corresponding IgG2σ variant. In particular, IgG1σ and IgG4σ variants demonstrate complete lack of effector function as measured by antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and in vivo T-cell activation. The IgG1σ and IgG4σ variants showed acceptable solubility and stability, and typical human IgG1 pharmacokinetic profiles in human FcRn-transgenic mice and cynomolgus monkeys. In silico T-cell epitope analyses predict a lack of immunogenicity in humans. Finally, crystal structures and simulations of the IgG1σ and IgG4σ Fc domains can explain the lack of Fc-mediated immune functions. These variants show promise for use in those therapeutic antibodies and Fc fusions for which the Fc domain should be immunologically "silent".

6.
Mol Immunol ; 75: 178-87, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27294560

RESUMEN

The cell-surface receptor ST2L triggers cytokine release by immune cells upon exposure to its ligand IL-33. To study the effect of ST2L-dependent signaling in different cell types, we generated antagonist antibodies that bind different receptor domains. We sought to characterize their activities in vitro using both transfected cells as well as basophil and mast cell lines that endogenously express the ST2L receptor. We found that antibodies binding Domain 1 versus Domain 3 of ST2L differentially impacted IL-33-induced cytokine release by mast cells but not the basophilic cell line. Analysis of gene expression in each cell type in the presence and absence of the Domain 1 and Domain 3 mAbs revealed distinct signaling pathways triggered in response to IL-33 as well as to each anti-ST2L antibody. We concluded that perturbing the ST2L/IL-33/IL-1RAcP complex using antibodies directed to different domains of ST2L have a cell-type-specific impact on cytokine release, and may indicate the association of additional receptors to the ST2L/IL-33/IL-1RAcP complex in mast cells.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Basófilos/inmunología , Degranulación de la Célula/efectos de los fármacos , Proteína 1 Similar al Receptor de Interleucina-1/antagonistas & inhibidores , Mastocitos/inmunología , Animales , Basófilos/efectos de los fármacos , Basófilos/metabolismo , Degranulación de la Célula/inmunología , Línea Celular , Citocinas/biosíntesis , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos , Proteínas Recombinantes , Resonancia por Plasmón de Superficie , Transcriptoma
7.
Cancer Res ; 76(13): 3942-53, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27216193

RESUMEN

Non-small cell lung cancers (NSCLC) with activating EGFR mutations become resistant to tyrosine kinase inhibitors (TKI), often through second-site mutations in EGFR (T790M) and/or activation of the cMet pathway. We engineered a bispecific EGFR-cMet antibody (JNJ-61186372) with multiple mechanisms of action to inhibit primary/secondary EGFR mutations and the cMet pathway. JNJ-61186372 blocked ligand-induced phosphorylation of EGFR and cMet and inhibited phospho-ERK and phospho-AKT more potently than the combination of single receptor-binding antibodies. In NSCLC tumor models driven by EGFR and/or cMet, JNJ-61186372 treatment resulted in tumor regression through inhibition of signaling/receptor downmodulation and Fc-driven effector interactions. Complete and durable regression of human lung xenograft tumors was observed with the combination of JNJ-61186372 and a third-generation EGFR TKI. Interestingly, treatment of cynomolgus monkeys with JNJ-61186372 resulted in no major toxicities, including absence of skin rash observed with other EGFR-directed agents. These results highlight the differentiated potential of JNJ-61186372 to inhibit the spectrum of mutations driving EGFR TKI resistance in NSCLC. Cancer Res; 76(13); 3942-53. ©2016 AACR.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Receptores ErbB/genética , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Macaca fascicularis , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación/genética , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Proteins ; 84(4): 427-34, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26800003

RESUMEN

Microtubule-associated protein tau becomes abnormally phosphorylated in Alzheimer's disease and other tauopathies and forms aggregates of paired helical filaments (PHF-tau). AT8 is a PHF-tau-specific monoclonal antibody that is a commonly used marker of neuropathology because of its recognition of abnormally phosphorylated tau. Previous reports described the AT8 epitope to include pS202/pT205. Our studies support and extend previous findings by also identifying pS208 as part of the binding epitope. We characterized the phosphoepitope of AT8 through both peptide binding studies and costructures with phosphopeptides. From the cocrystal structure of AT8 Fab with the diphosphorylated (pS202/pT205) peptide, it appeared that an additional phosphorylation at S208 would also be accommodated by AT8. Phosphopeptide binding studies showed that AT8 bound to the triply phosphorylated tau peptide (pS202/pT205/pS208) 30-fold stronger than to the pS202/pT205 peptide, supporting the role of pS208 in AT8 recognition. We also show that the binding kinetics of the triply phosphorylated peptide pS202/pT205/pS208 was remarkably similar to that of PHF-tau. The costructure of AT8 Fab with a pS202/pT205/pS208 peptide shows that the interaction interface involves all six CDRs and tau residues 202-209. All three phosphorylation sites are recognized by AT8, with pT205 acting as the anchor. Crystallization of the Fab/peptide complex under acidic conditions shows that CDR-L2 is prone to unfolding and precludes peptide binding, and may suggest a general instability in the antibody.


Asunto(s)
Anticuerpos Monoclonales/química , Epítopos/química , Fragmentos Fab de Inmunoglobulinas/química , Fosfopéptidos/química , Proteínas tau/química , Secuencia de Aminoácidos , Anticuerpos Monoclonales/biosíntesis , Sitios de Unión de Anticuerpos , Cristalografía por Rayos X , Mapeo Epitopo , Epítopos/metabolismo , Expresión Génica , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas/biosíntesis , Modelos Moleculares , Fosfopéptidos/síntesis química , Fosforilación , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Monoclon Antib Immunodiagn Immunother ; 34(6): 373-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26683175

RESUMEN

CCL22 inactivation in vivo occurs by cleavage at the N-terminus; however, it is unclear whether this encompasses the entire site of CCR4 interaction. CCL17 also binds CCR4 and its function requires binding via two discrete binding sites. Using monoclonal antibodies (MAbs), we report that there are two separate sites on CCL22 that are required for CCR4-mediated function. The CCL22-specific antibodies bind with affinities of 632 ± 297 pM (MC2B7) and 308 ± 43 pM (MAB4391) and neither exhibited detectable binding to CCL17. Both antibodies are comparable in their ability to inhibit CCL22-mediated calcium mobilization; however, competition binding studies demonstrate that MC2B7 and MAB4391 bind to distinct epitopes on CCL22. Both antibodies inhibit function through CCR4, which is demonstrated by loss of ß-arrestin recruitment in a reporter cell line. In both assays, blocking either site independently abolished CCL22 function, suggesting that concurrent engagement of both sites with CCR4 is necessary for function. This is the first demonstration that CCL22 has two distinct binding sites that are required for CCR4 function. These antibodies are valuable tools for better understanding the interaction and function of CCL22 and CCR4 and will potentially help further understanding of the differential outcomes of CCL17 and CCL22 interaction with CCR4.


Asunto(s)
Anticuerpos Monoclonales/química , Arrestinas/inmunología , Quimiocina CCL22/inmunología , Epítopos/inmunología , Receptores CCR4/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Arrestinas/genética , Sitios de Unión , Unión Competitiva , Línea Celular , Quimiocina CCL17/genética , Quimiocina CCL17/inmunología , Quimiocina CCL22/genética , Células Dendríticas/citología , Células Dendríticas/inmunología , Epítopos/química , Epítopos/genética , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Ratones , Unión Proteica , Estructura Terciaria de Proteína , Receptores CCR4/genética , Transducción de Señal , Linfocitos T/citología , Linfocitos T/inmunología , beta-Arrestinas
10.
PLoS One ; 8(12): e81465, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339934

RESUMEN

CCL17 (TARC) function can be completely abolished by mAbs that block either one of two distinct sites required for CCR4 signaling. This chemokine is elevated in sera of asthma patients and is responsible for establishing inflammatory sites through CCR4-mediated recruitment of immune cells. CCL17 shares the GPCR CCR4, with CCL22 (MDC) but these two chemokines differentially affect the immune response. To better understand chemokine mediated effects through CCR4, we have generated chimeric anti-mouse CCL17 surrogate antibodies that inhibit function of this ligand in vitro and in vivo. The affinities of the surrogate antibodies for CCL17 range from 685 pM for B225 to 4.9 nM for B202. One antibody, B202, also exhibits weak binding to CCL22 (KD∼2 µM) and no binding to CCL22 is detectable with the second antibody, B225. In vitro, both antibodies inhibit CCL17-mediated calcium mobilization, ß-arrestin recruitment and chemotaxis; B202 can also partially inhibit CCL22-mediated ß-arrestin recruitment. Both B202 and B225 antibodies neutralize CCL17 in vivo as demonstrated by reduction of methacholine-induced airway hyperreactivity in the A. fumigatus model of asthma. That both antibodies block CCL17 function but only B202 shows any inhibition of CCL22 function suggests that they bind CCL17 at different sites. Competition binding studies confirm that these two antibodies recognize unique epitopes that are non-overlapping despite the small size of CCL17. Taking into consideration the data from both the functional and binding studies, we propose that effective engagement of CCR4 by CCL17 involves two distinct binding domains and interaction with both is required for signaling.


Asunto(s)
Quimiocina CCL17/química , Quimiocina CCL17/metabolismo , Pulmón/metabolismo , Pulmón/patología , Receptores CCR4/metabolismo , Transducción de Señal , Animales , Anticuerpos Neutralizantes/inmunología , Quimiocina CCL17/inmunología , Quimiocina CCL22/metabolismo , Femenino , Ratones , Unión Proteica , Estructura Terciaria de Proteína
11.
Protein Eng Des Sel ; 25(10): 531-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22915597

RESUMEN

Some antibodies have a tendency to self-associate leading to precipitation at relatively low concentrations. CNTO607, a monoclonal antibody, precipitates irreversibly in phosphate-buffered saline at concentrations above 13 mg/ml. Previous mutagenesis work based on the Fab crystal structure pinpointed a three residue fragment in the heavy chain CDR-3, (99)FHW(100a), as an aggregation epitope that is anchored by two salt bridges. Biophysical characterization of variants reveals that F99 and W100a, but not H100, contribute to the intermolecular interaction. A K210T/K215T mutant designed to disrupt the charge interactions in the aggregation model yielded an antibody that does not precipitate but forms reversible aggregates. An isotype change from IgG1 to IgG4 prevents the antibody from precipitating at low concentration yet the solution viscosity is elevated. To further understand the nature of the antibody self-association, studies on the Fab fragment found high solubility but significant self- and cross-interactions remain. Dynamic light scattering data provides evidence for higher order Fab structure at increased concentrations. Our results provide direct support for the aggregation model that CNTO607 precipitation results primarily from the specific interaction of the Fab arms of neighboring antibodies followed by the development of an extensive network of antibodies inducing large-scale aggregation and precipitation.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Interleucina-13/inmunología , Animales , Anticuerpos Monoclonales/genética , Línea Celular , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/genética , Modelos Moleculares , Mutagénesis , Mutación , Conformación Proteica , Solubilidad
12.
J Mol Biol ; 421(1): 112-24, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22579623

RESUMEN

Toll-like receptor 3 (TLR3) recognizes dsRNA and initiates an innate immune response through the formation of a signaling unit (SU) composed of one double-stranded RNA (dsRNA) and two TLR3 molecules. We report the crystal structure of human TLR3 ectodomain (TLR3ecd) in a quaternary complex with three neutralizing Fab fragments. Fab15 binds an epitope that overlaps the C-terminal dsRNA binding site and, in biochemical assays, blocks the interaction of TLR3ecd with dsRNA, thus directly antagonizing TLR3 signaling through inhibition of SU formation. In contrast, Fab12 and Fab1068 bind TLR3ecd at sites distinct from the N- and C-terminal regions that interact with dsRNA and do not inhibit minimal SU formation with short dsRNA. Molecular modeling based on the co-structure rationalizes these observations by showing that both Fab12 and Fab1068 prevent lateral clustering of SUs along the length of the dsRNA ligand. This model is further supported by cell-based assay results using dsRNA ligands of lengths that support single and multiple SUs. Thus, their antagonism of TLR3 signaling indicates that lateral clustering of SUs is required for TLR3 signal transduction.


Asunto(s)
ARN Bicatenario/metabolismo , Receptor Toll-Like 3/química , Receptor Toll-Like 3/metabolismo , Afinidad de Anticuerpos , Sitios de Unión , Línea Celular , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Transducción de Señal , Receptor Toll-Like 3/genética
13.
J Mol Recognit ; 25(3): 174-83, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22407981

RESUMEN

There are a number of proteins whose active forms are non-covalent multichain complexes. Therapeutic intervention involving such complexes has been proposed through the use of muteins to form heterostructures. These resulting structures would either not be recognized by receptors or would be inactive competitive inhibitors to wild-type (wt) proteins. We have used tumor necrosis factor-α (TNF-α) to establish that it is possible to use mass spectrometry to monitor the non-covalent solution structure of therapeutically relevant proteins and correlate the results with binding data. Mass spectrometry is shown to be able to directly monitor the state of the solution complexes to within 5 Da errors mass accuracy of theoretical mass at 50 kDa, as well as to resolve homocomplex from heterocomplex. Furthermore, it was determined that perturbation of the TNF-α complex, at or below pH 4.0, results in monomers that cannot reform into the multimeric complex, and the resulting protein solution can no longer bind to an anti-TNF-α antibody. Dissociation and re-association of the trimer was possible with the use of dimethyl sulfoxide at pH 5.5 and allowed for the resulting detection of both homotrimer and heterotrimer in solution with no impact on antibody binding. This work demonstrates that mass spectrometric techniques offer a means to monitor native solution interactions of non-covalent complexes and to differentiate multiple complexes from each other in solution. This method has applicability in the biopharmaceutical arena for monitoring engineering non-covalent drug complexes for the purpose of altering biological activity.


Asunto(s)
Desnaturalización Proteica , Espectrometría de Masa por Ionización de Electrospray , Factor de Necrosis Tumoral alfa/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dimetilsulfóxido/química , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Peso Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Multimerización de Proteína , Replegamiento Proteico , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Solventes/química , Factor de Necrosis Tumoral alfa/genética
14.
J Mol Biol ; 402(5): 797-812, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20691190

RESUMEN

Interleukin (IL)-12 and IL-23 are heterodimeric proinflammatory cytokines that share a common p40 subunit, paired with p35 and p19 subunits, respectively. They represent an attractive class of therapeutic targets for the treatment of psoriasis and other immune-mediated diseases. Ustekinumab is a fully human monoclonal antibody (mAb) that binds specifically to IL-12/IL-23p40 and neutralizes human IL-12 and IL-23 bioactivity. The crystal structure of ustekinumab Fab (antigen binding fragment of mAb), in complex with human IL-12, has been determined by X-ray crystallography at 3.0 Å resolution. Ustekinumab Fab binds the D1 domain of the p40 subunit in a 1:1 ratio in the crystal, consistent with a 2 cytokines:1 mAb stoichiometry, as measured by isothermal titration calorimetry. The structure indicates that ustekinumab binds to the same epitope on p40 in both IL-12 and IL-23 with identical interactions. Mutational analyses confirm that several residues identified in the IL-12/IL-23p40 epitope provide important molecular binding interactions with ustekinumab. The electrostatic complementarity between the mAb antigen binding site and the p40 D1 domain epitope appears to play a key role in antibody/antigen recognition specificity. Interestingly, this structure also reveals significant structural differences in the p35 subunit and p35/p40 interface, compared with the published crystal structure of human IL-12, suggesting unusual and potentially functionally relevant structural flexibility of p35, as well as p40/p35 recognition. Collectively, these data describe unique observations about IL-12p35 and ustekinumab interactions with p40 that account for its dual binding and neutralization of IL-12 and IL-23.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Factores Inmunológicos/química , Factores Inmunológicos/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Sustitución de Aminoácidos/genética , Anticuerpos Monoclonales Humanizados , Calorimetría , Cristalografía por Rayos X , Epítopos/genética , Epítopos/inmunología , Humanos , Interleucina-12/genética , Interleucina-23/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Cuaternaria de Proteína , Ustekinumab
15.
Protein Eng Des Sel ; 23(8): 643-51, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20543007

RESUMEN

Protein aggregation is of great concern to pharmaceutical formulations and has been implicated in several diseases. We engineered an anti-IL-13 monoclonal antibody CNTO607 for improved solubility. Three structure-based engineering approaches were employed in this study: (i) modifying the isoelectric point (pI), (ii) decreasing the overall surface hydrophobicity and (iii) re-introducing an N-linked carbohydrate moiety within a complementarity-determining region (CDR) sequence. A mutant was identified with a modified pI that had a 2-fold improvement in solubility while retaining the binding affinity to IL-13. Several mutants with decreased overall surface hydrophobicity also showed moderately improved solubility while maintaining a similar antigen affinity. Structural studies combined with mutagenesis data identified an aggregation 'hot spot' in heavy-chain CDR3 (H-CDR3) that contains three residues ((99)FHW(100a)). The same residues, however, were found to be essential for high affinity binding to IL-13. On the basis of the spatial proximity and germline sequence, we reintroduced the consensus N-glycosylation site in H-CDR2 which was found in the original antibody, anticipating that the carbohydrate moiety would shield the aggregation 'hot spot' in H-CDR3 while not interfering with antigen binding. Peptide mapping and mass spectrometric analysis revealed that the N-glycosylation site was generally occupied. This variant showed greatly improved solubility and bound to IL-13 with affinity similar to CNTO607 without the N-linked carbohydrate. All three engineering approaches led to improved solubility and adding an N-linked carbohydrate to the CDR was the most effective route for enhancing the solubility of CNTO607.


Asunto(s)
Anticuerpos Monoclonales/química , Conformación Proteica , Ingeniería de Proteínas/métodos , Estabilidad Proteica , Secuencia de Aminoácidos , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Sitios de Unión , Rastreo Diferencial de Calorimetría , Electroforesis en Gel de Poliacrilamida , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Interleucina-13/antagonistas & inhibidores , Interleucina-13/metabolismo , Focalización Isoeléctrica , Punto Isoeléctrico , Modelos Moleculares , Datos de Secuencia Molecular , Mapeo Peptídico , Multimerización de Proteína , Solubilidad , Temperatura
16.
Pharm Res ; 27(1): 65-71, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19911257

RESUMEN

PURPOSE: To develop a high-throughput cross-interaction chromatography screening method to rapidly identify antibody candidates with poor solubility using microgram quantities of purified material. METHODS: A specific recombinant antibody or bulk polyclonal IgG purified from human serum was chemically coupled to an NHS-activated chromatography resin. The retention times of numerous monoclonal antibodies were determined on this resin using an HPLC and compared to the solubility of each antibody estimated by ultrafiltration. RESULTS: Retention times of the antibodies tested were found to be inversely related to solubility, with antibodies prone to precipitate at low concentrations in PBS being retained longer on the columns with broader peaks. The technique was successfully used to screen microgram quantities of a panel of therapeutic antibodies to identify candidates with low solubility in PBS. CONCLUSIONS: The cross-interaction chromatography methods described can be used to screen large panels of recombinant antibodies in order to discover those with low solubility. Addition of this tool to the array of tools available for characterization of affinity and activity of antibody therapeutic candidates will improve selection of candidates with biophysical properties favorable to development of high concentration antibody formulations.


Asunto(s)
Anticuerpos Monoclonales/química , Cromatografía Líquida de Alta Presión/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Proteínas Recombinantes/química , Solubilidad , Ultrafiltración/métodos
18.
J Mol Biol ; 389(1): 115-23, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19361524

RESUMEN

CNTO607 is a neutralizing anti-interleukin-13 (IL-13) human monoclonal antibody obtained from a phage display library. To determine how this antibody inhibits the biological effect of IL-13, we determined the binding epitope by X-ray crystallography. The crystal structure of the complex between CNTO607 Fab and IL-13 reveals the antibody epitope at the surface formed by helices A and D of IL-13. This epitope overlaps with the IL-4Ralpha/IL-13Ralpha1 receptor-binding site, which explains the neutralizing effect of CNTO607. The extensive antibody interface covers an area of 1000 A(2), which is consistent with the high binding affinity. The key features of the interface are the charge and shape complementarity of the molecules that include two hydrophobic pockets on IL-13 that accommodate Phe32 [complementarity-determining region (CDR) L2] and Trp100a (CDR H3) and a number of salt bridges between basic residues of IL-13 and acidic residues of the antibody. Comparison with the structure of the free Fab shows that the CDR residues do not change their conformation upon complex formation, with the exception of two residues in CDR H3, Trp100a and Asp100b, which change rotamer conformations. To evaluate the relative contribution of the epitope residues to CNTO607 binding, we performed alanine-scanning mutagenesis of the A-D region of IL-13. This study confirmed the primary role of electrostatic interactions for antigen recognition.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Mapeo Epitopo , Interleucina-13/inmunología , Antígenos/química , Regiones Determinantes de Complementariedad/química , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Interleucina-13/química , Modelos Moleculares , Mutagénesis , Proteínas Mutantes/química , Pruebas de Neutralización , Estructura Secundaria de Proteína , Receptores de Interleucina-13/química , Electricidad Estática
19.
J Gen Virol ; 88(Pt 10): 2719-2723, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17872524

RESUMEN

Chimeric 101F (ch101F) is a mouse-human chimeric anti-human respiratory syncytial virus (HRSV) neutralizing antibody that recognizes residues within antigenic site IV, V, VI of the fusion (F) glycoprotein. The binding of ch101F to a series of peptides overlapping aa 422-438 spanning antigenic site IV, V, VI was analysed. Residues 423-436 comprise the minimal peptide sequence for ch101F binding. Substitution analysis revealed that R429 and K433 are critical for ch101F binding, whilst K427 makes a minor contribution. Binding of ch101F to a series of single mutations at positions 427, 429 and 433 in the F protein expressed recombinantly on the cell surface confirmed the peptide results. Sequence analysis of viruses selected for resistance to neutralization by ch101F indicated that a single change (K433T) in the F protein allowed ch101F escape. The results confirm that ch101F and palivizumab have different epitope specificity and define key residues for ch101F recognition.


Asunto(s)
Virus Sincitial Respiratorio Humano/genética , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/inmunología , Vacunas Virales , Animales , Anticuerpos Monoclonales , Biotinilación , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Fragmentos de Péptidos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
20.
Biochem J ; 387(Pt 3): 727-35, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15579134

RESUMEN

Gas6 (growth-arrest-specific gene 6) is a vitamin K-dependent protein known to activate the Axl family of receptor tyrosine kinases. It is an important regulator of thrombosis and many other biological functions. The C-terminus of Gas6 binds to receptors and consists of two laminin-like globular domains LG1 and LG2. It has been reported that a Ca2+-binding site at the junction of LG1 and LG2 domains and a hydrophobic patch at the LG2 domain are important for receptor binding [Sasaki, Knyazev, Cheburkin, Gohring, Tisi, Ullrich, Timpl and Hohenester (2002) J. Biol. Chem. 277, 44164-44170]. In the present study, we developed a neutralizing human monoclonal antibody, named CNTO300, for Gas6. The antibody was generated by immunization of human IgG-expressing transgenic mice with recombinant human Gas6 protein and the anti-Gas6 IgG sequences were rescued from an unstable hybridoma clone. Binding of Gas6 to its receptors was partially inhibited by the CNTO300 antibody in a dose-dependent manner. To characterize further the interaction between Gas6 and this antibody, the binding kinetics of CNTO300 for recombinant Gas6 were compared with independently expressed LG1 and LG2. The CNTO300 antibody showed comparable binding affinity, yet different dependence on Ca2+, to Gas6 and LG1. No binding to LG2 was detected. In the presence of EDTA, binding of the antibody to Gas6 was disrupted, but no significant effect of EDTA on LG1 binding was evident. Further epitope mapping identified a Gas6 peptide sequence recognized by the CNTO300 antibody. This peptide sequence was found to be located at the LG1 domain distant from the Ca2+-binding site and the hydrophobic patch. Co-interaction of Gas6 with its receptor and CNTO300 antibody was detected by BIAcore analysis, suggesting a second receptor-binding site on the LG1 domain. This hypothesis was further supported by direct binding of Gas6 receptors to an independently expressed LG1 domain. Our results revealed, for the first time, a second binding site for Gas6-receptor interaction.


Asunto(s)
Anticuerpos Monoclonales/química , Péptidos y Proteínas de Señalización Intercelular/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/química , Mapeo Epitopo , Humanos , Cinética , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...