Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
2.
FASEB J ; 38(5): e23550, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38466338

RESUMEN

Breast cancer is the most prevalent malignant tumor in women. Adriamycin (ADR) is a primary chemotherapy drug, but resistance limits its effectiveness. Ferroptosis, a newly identified cell death mechanism, involves the transferrin receptor (TFRC), closely linked with tumor cells. This study aimed to explore TFRC and ferroptosis's role in breast cancer drug resistance. Bioinformatics analysis showed that TFRC was significantly downregulated in drug-resistant cell lines, and patients with low TFRC expression might demonstrate a poor chemotherapeutic response to standard treatment. High expression of TFRC was positively correlated with most of the ferroptosis-related driver genes. The research findings indicate that ferroptosis markers were higher in breast cancer tissues than in normal ones. In chemotherapy-sensitive cases, Ferrous ion (Fe2+ ) and malondialdehyde (MDA) levels were higher than in resistant cases (all p < .05). TFRC expression was higher in breast cancer than in normal tissue, especially in the sensitive group (all p < .05). Cytological experiments showed increased hydrogen peroxide (H2 O2 ) after ADR treatment in both sensitive and resistant cells, with varying MDA changes (all p < .05). Elevating TFRC increased Fe2+ and MDA in ADR-resistant cells, enhancing their sensitivity to ADR. However, TFRC upregulation combined with ADR increased proliferation and invasiveness in resistant cell lines (all p < .05). In conclusion, ADR resistance to breast cancer is related to the regulation of iron ion-mediated ferroptosis by TFRC. Upregulation of TFRC in ADR-resistant breast cancer cells activates ferroptosis and reverses ADR chemotherapy resistance of breast cancer.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Doxorrubicina/farmacología , Receptores de Transferrina/genética , Transferrina
3.
Heliyon ; 10(2): e24458, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312680

RESUMEN

Gastric cancer is a common malignant tumor with a high mortality rate. Abnormal APOBEC3B (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B) expression increases tumor susceptibility. However, the exact molecular mechanism of APOBEC3B expression in the development of gastric cancer is still unknown. We investigated the effect of APOBEC3B on the malignant biological behavior of gastric cancer cells and discussed the role of APOBEC3B in the development and progression of gastric cancer. APOBEC3B protein levels were measured in 161 gastric cancer samples using western blotting and immunohistochemistry. Both in vitro and in vivo assays were performed, and molecules were analyzed using bioinformatics analysis and western blotting. APOBEC3B was overexpressed in gastric cancer. Moreover, APOBEC3B significantly enhanced cell proliferation in vitro and tumorigenicity in vivo. Regarding the underlying mechanism, APOBEC3B promoted the proliferation of gastric cancer cells by upregulating P53, MCM2 (minichromosome maintenance protein 2), and cyclin D1. Our results suggest that APOBEC3B is involved in cancer progression, providing a new theoretical basis for the prevention and treatment of gastric cancer.

4.
Org Lett ; 26(3): 763-768, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38227333

RESUMEN

Construction of the Csp2-Csp3 bond without the aid of transition metal catalysts has been achieved by coupling the electrogenerated alkyl radicals with electron deficient (hetero)arenes in an undivided cell. Simultaneous cathodic reduction of both unactivated alkyl halides and cyanobenzenes under high potential enables radical-radical cross-coupling to deliver alkylarenes in the absence of transition metals. Depending on the coupling partner, the electrogenerated alkyl radicals can also proceed the Minisci-type reaction with N-heteroarenes without redox agents.

6.
Front Oncol ; 13: 1290791, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38115905

RESUMEN

Background: Tumor abnormal protein (TAP), the sugar chain protein released by tumor cells during metabolism, allows the development of a technique that exploits aggregated tumor-associated abnormal sugar chain signals in diagnosing malignancies. Clinically, we have found that TAP detection can well predict some malignancies, but several physicians have not paid attention, and related studies have been minimal. Methods: We evaluated TAP's ability to distinguish between malignancies and benign diseases by receiver operating characteristic (ROC) curve analysis and studied the possibility of monitoring malignancy progression by evaluating TAP levels in follow-up. We used Kaplan-Meier survival curves and Cox proportional hazard regression models to investigate the relationship between TAP and prognosis. Results: TAP levels were higher in whole solid malignancies and every type of solid malignancy than in benign patients. ROC curve analysis showed that TAP levels aid in distinguishing between malignancies and benign diseases. TAP levels decreased in patients with complete remission (CR) after treatment and increased in patients with relapse from CR. Patients with metastases had higher TAP levels than non-CR patients without metastases. There was no difference in overall survival among patients with different TAP levels, and multivariate analysis suggested that TAP was not an independent risk factor for solid malignancies. Conclusion: TAP is an effective screening biomarker for many solid malignancies that can be used to monitor the progression of malignancies but not to prognosticate.

7.
Eur J Med Res ; 28(1): 430, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828579

RESUMEN

Allergic rhinitis (AR) is a prevalent chronic inflammatory disease of the nasal mucosa primarily characterized by symptoms, such as nasal itching, sneezing, runny nose, and nasal congestion. It has a high recurrence rate and low cure rate, with a lack of effective drugs for treatment. The current approach to management focuses on symptom control. High mobility group box-1 (HMGB1) is a highly conserved non-histone protein widely present in the nucleus of eukaryotes. It is recognized as a proinflammatory agent, and recent studies have demonstrated its close association with AR. Here, we will elaborate the role and mechanism of HMGB1 in AR, so as to reveal the potential value of HMGB1 in the occurrence and development of AR, and provide a new target for clinical research on the treatment of AR.


Asunto(s)
Proteína HMGB1 , Rinitis Alérgica , Humanos , Rinitis Alérgica/tratamiento farmacológico , Enfermedad Crónica
8.
EClinicalMedicine ; 63: 102189, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37692076

RESUMEN

Background: This study aimed to evaluate the efficacy and safety of RAY1216, a novel inhibitor of 3-chymotrypsin-like cysteine protease (3CLpro), in adults with coronavirus disease 2019 (COVID-19). Methods: This phase 2, single centre, randomised, double-blind, placebo-controlled trial included hospitalised patients between August 14, 2022, and September 26, 2022, in Sanya Central Hospital (The Third People's Hospital of Hainan Province) in China with no severe symptoms if they had laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for not more than 120 h (5 days) and a real-time quantitative polymerase chain reaction (qPCR) cycle threshold (Ct) value of ≤30 for both the open reading frames 1 ab (ORF1ab) and nucleocapsid (N) genes within 72 h before randomisation. Half of the participants (n = 30) were randomly assigned (2:1) to receive either RAY1216 or a matched placebo three times a day (TID) for 5 days (15 doses in total), while the other half received RAY1216 plus ritonavir (RAY1216 plus RTV) or a matched placebo every 12 h for 5 days (10 doses in total). The primary endpoint was the time of viral clearance. Secondary outcomes included the changes of the SARS-CoV-2 RNA viral load, the positivity rate of the nucleic acid test, and the recovery time of clinical symptoms. A safety evaluation was performed to record and analyse all adverse events that occurred during and after drug administration as well as any cases in which dosing was halted because of these events. Clinicaltrials.gov identifier: ChiCTR2200062889. Findings: The viral shedding times in the RAY1216 and RAY1216 plus RTV groups were 166 h (95% confidence interval (CI): 140-252) and 155 h (95%CI: 131-203), respectively, which were 100 h (4.2 days) and 112 h (4.6 days) shorter than that of the placebo group, respectively (RAY1216 group vs. Placebo p = 0.0060, RAY1216 plus RTV group vs. Placebo p = 0.0001). At 24 h, 72 h, and 120 h after administration, the viral RNA loads in the RAY1216 and RAY1216 plus RTV groups were significantly less than those of the placebo groups. At 280 h (11.5 days) after administration, the nucleic acid test results in the RAY1216 and RAY1216 plus RTV groups were both negative. The common adverse events related to the investigational drugs were mild and self-limiting laboratory examination abnormalities. Interpretation: Our findings suggest that RAY1216 monotherapy and RAY1216 plus ritonavir both demonstrated significant antiviral activity and reduced the duration of COVID-19 while maintaining a satisfactory safety profile. Considering the limited clinical application of RTV, it is recommended to use RAY1216 alone to further verify its efficacy and safety. Funding: This study was sponsored by the Key Research and Development Program of China (2022YFC0868700).

9.
Microbiol Spectr ; : e0044123, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37724875

RESUMEN

Staphylococcus haemolyticus (S. haemolyticus) is a coagulase-negative Staphylococcus that has become one of the primary causes of nosocomial infection. After a long period of antibiotic use, S. haemolyticus has developed multiple resistance phenotypes for macrolides and lincosamides. Herein, we evaluated four S. haemolyticus clinical isolates, of which three had antibiotic resistance patterns reported previously. The fourth isolate was resistant to both erythromycin and clindamycin in the absence of erythromycin induction. This novel phenotype, known as constitutive macrolides-lincosamides-streptogramins resistance, has been reported in other bacteria but has not been previously reported in S. haemolyticus. Investigation of the isolate demonstrated a deletion in the methyltransferase gene ermC, upstream leader peptide. This deletion resulted in constitutive MLS resistance based on whole-genome sequencing and experimental verification. Continuous expression of ermC was shown to inhibit the growth of S. haemolyticus, which turned out to be the fitness cost with no MLS pressure. In summary, this study is the first to report constitutive MLS resistance in S. haemolyticus, which provides a better understanding of MLS resistance in clinical medicine. IMPORTANCE This study identified a novel phenotype of macrolides/lincosamides resistance in Staphylococcus haemolyticus which improved a better guidance for clinical treatment. It also clarified the mechanistic basis for this form of antibiotic resistance that supplemented the drug resistance mechanism of Staphylococcus. In addition, this study elaborated on a possibility that continuous expression of some resistance genes was shown to inhibit the growth of bacteria themselves, which turned out to be the fitness cost in the absence of antibiotic pressure.

10.
J Health Popul Nutr ; 42(1): 63, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420277

RESUMEN

BACKGROUND: The elevated circulating toxins secondary to the impairment of intestinal barrier integrity commonly elicit a chronic inflammatory response and finally contribute to multiple diseases. These toxins, including bacterial by-products and heavy metals, are the potent risk factors for the development of recurrent spontaneous abortion (RSA). Preclinical evidence suggests that several dietary fibers can restore intestinal barrier function and decrease the accumulation of heavy metals. However, it is uncertain whether treatment with a newly developed blend of dietary fibers product (Holofood) benefits patients with RSA. METHODS: In this trial, we enrolled 70 adult women with RSA, who were randomly assigned into the experiment group and the control group in a 2:1 ratio. Upon the basis of conventional therapy, subjects in the experiment group (n = 48) received 8 weeks oral administration with Holofood three times daily at a dose of 10 g each time. Subjects without Holofood consumption were set as the control (n = 22). Blood samples were collected for the determinations of metabolic parameters, heavy mental lead, and the indices related to intestinal barrier integrity (D-lactate, bacterial endotoxin, and diamine oxidase activity). RESULTS: The reduction amplitude in blood lead from baseline to week 8 was 40.50 ± 54.28 (µg/L) in the experiment group as compared with 13.35 ± 36.81 (µg/L) in the control group (P = 0.037). The decreased level of serum D-lactate from baseline to week 8 was 5.58 ± 6.09 (mg/L) in the experiment group as compared with - 2.38 ± 8.90 (mg/L, P < 0.0001) in the control group. The change in serum DAO activity from baseline to week 8 was 3.26 ± 2.23 (U/L) in the experiment group as compared with - 1.24 ± 2.22 (U/L, P < 0.0001) in the control group. Participants who received Holofood had a greater decline in blood endotoxin from baseline to week 8 than those in the control group. Moreover, by comparing with the self-baseline, Holofood consumption significantly decreased the blood levels of lead, D-lactate, bacterial endotoxin, and DAO activity. CONCLUSION: Our results suggest that Holofood affords a clinically relevant improvements in blood lead level and intestinal barrier dysfunction in patients with RSA.


Asunto(s)
Aborto Espontáneo , Plomo , Humanos , Adulto , Femenino , Embarazo , Plomo/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Aborto Espontáneo/metabolismo , Endotoxinas/metabolismo , Fibras de la Dieta/uso terapéutico , Fibras de la Dieta/metabolismo , Ácido Láctico/metabolismo
11.
Front Microbiol ; 14: 1115740, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266015

RESUMEN

Introduction: The raise of multi-drug resistant bacteria involving carbapenem, colistin, or tigecycline resistance constitutes a threat to public health, which partly results from the transmission of corresponding mobile resistance genes, such as blaKPC and blaNDM for carbapenem, mcr for colistin, and tmexCD-toprJ gene cluster for tigecycline. Herein, we described the emergence of an Aeromonas veronii strain HD6454 co-harboring blaKPC-2, mcr-3.17, and tmexC3.2-tmexD3.3-toprJ1b gene cluster from hospital sewage. Methods: Whole genome sequencing (WGS) was used to determine the genome sequence of HD6454, and the detailed genomic analysis of genetic elements or regions carrying key antimicrobial resistance genes (ARGs) from HD6454 were performed. Cloning experiment was conducted to confirm the function of key ARGs in mediating antimicrobial resistance. Conjugation experiment was conducted to determine the mobility of the plasmid. Results: The results showed that this strain belonged to a novel sequence type (ST) variant ST1016, and carried 18 important ARGs. Among them, the blaKPC-2 was carried by non-self-transmissible IncP-6 plasmid, while tmexC3.2-tmexD3.3-toprJ1b gene cluster and mcr-3.17 were carried by integrative and mobilizable element (IME) or IME-related region in chromosome. The mcr-3.17, mcr-3.6, and mcr-3-like3 genes were further inferred to originate from IMEs of Aeromonas species. Additionally, for the first time, the mcr-3.17 was confirmed to confer low-level resistance to colistin under inducible expression, while tmexC3.2-tmexD3.3-toprJ1b gene cluster was confirmed to confer low-level resistance to tigecycline. Discussion: This is the first report of a strain co-harboring blaKPC-2, mcr-3.17, and tmexC3.2-tmexD3.3-toprJ1b gene cluster. Although the resistance and/or mobility of these ARGs are limited in this strain, the emergence of this multiple important ARGs-carrying strain deserves further attention.

12.
Front Biosci (Landmark Ed) ; 28(4): 80, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37114540

RESUMEN

BACKGROUND: The purpose of the present study was to investigate the role of the 5-Fluorouracil (5-FU) resistance-related factor dihydropyrimidine dehydrogenase (DPD) in tumor immunity and prognosis and to study the relationship between drug resistance and the immune microenvironment of colon cancer. METHODS: Bioinformatics methods were used to analyze the expression of DPD associated with prognosis, immunity, microsatellite instability, and tumor mutational burden in colon cancer. Immunohistochemistry (IHC) was used to detect DPD, MLH1, MSH2, MSH6, and PMS2 in 219 colon cancer tissue samples. Additional IHC analyses were conducted to detect CD4, CD8, CD20, and CD163 in 30 colon cancer tissue samples with the most extensive immune infiltration. The significance of the correlations and clinical significance of DPD with immune infiltration, immune-related markers, microsatellite instability-related indicators, and prognosis were evaluated. RESULTS: The major findings of the present study are as follows: (1) DPD was expressed in tumor and immune cells and associated with certain immune cell-related markers, particularly M2 macrophages that expressed CD163. (2) DPD expression significantly and positively correlated with immune cell markers and immune checkpoints PD-1 and PD-L1. High expression of DPD in immune cells, but not tumor cells, led to increased immune infiltration. (3) High expression of DPD in immune and tumor cells induced 5-FU resistance and was associated with unfavorable prognosis. (4) DPD expression closely correlated with microsatellite instability and tumor mutational burden and led to resistance to 5-FU in patients with microsatellite instability. (5) Bioinformatics analyses revealed that DPD was enriched in immune-related functions and pathways such as activation of T cells and macrophages. CONCLUSIONS: DPD plays an important role in the immune microenvironment and drug resistance of colon cancers and their functional association.


Asunto(s)
Neoplasias del Colon , Dihidrouracilo Deshidrogenasa (NADP) , Humanos , Dihidrouracilo Deshidrogenasa (NADP)/genética , Dihidrouracilo Deshidrogenasa (NADP)/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Inestabilidad de Microsatélites , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral
13.
Environ Sci Pollut Res Int ; 30(20): 57653-57666, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36971945

RESUMEN

Although effects of atmospheric nitrogen (N) deposition on forest plants have been widely investigated, N interception and absorption effects by forest canopy should not be neglected. Moreover, how N deposition change the molecular biological process of understory dominant plants, which was easily influenced by canopy interception so as to further change physiological performance, remains poorly understood. To assess the effects of N deposition on forest plants, we investigated the effects of understory (UAN) and canopy N addition (CAN) on the transcriptome and physiological properties of Ardisia quinquegona, a dominant subtropical understory plant species in an evergreen broad-leaved forest in China. We identified a total of 7394 differentially expressed genes (DEGs). Three of these genes were found to be co-upregulated in CAN as compared to control (CK) after 3 and 6 h of N addition treatment, while 133 and 3 genes were respectively found to be co-upregulated and co-downregulated in UAN as compared to CK. In addition, highly expressed genes including GP1 (a gene involved in cell wall biosynthesis) and STP9 (sugar transport protein 9) were detected in CAN, which led to elevated photosynthetic capacity and accumulation of protein and amino acid as well as decrease in glucose, sucrose, and starch contents. On the other hand, genes associated with transport, carbon and N metabolism, redox response, protein phosphorylation, cell integrity, and epigenetic regulation mechanism were affected by UAN, resulting in enhanced photosynthetic capacity and carbohydrates and accumulation of protein and amino acid. In conclusion, our results showed that the CAN compared to UAN treatment had less effects on gene regulation and carbon and N metabolism. Canopy interception of N should be considered through CAN treatment to simulate N deposition in nature.


Asunto(s)
Ardisia , Árboles , Árboles/metabolismo , Ardisia/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Epigénesis Genética , Bosques , Plantas/metabolismo , Carbohidratos , China , Aminoácidos/metabolismo , Ecosistema
14.
Oncol Lett ; 25(3): 132, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36844617

RESUMEN

Non-intestinal adenocarcinoma of nasal cavity and paranasal sinuses (n-ITAC) is a heterogeneous tumor, which has rarely been reported in previous studies. Most high-grade n-ITAC has poor prognosis and there is a lack of classic therapeutic strategy. The present study examined using the PACS system of Nanfang Hospital of Southern Medical University between January 2000 and June 2020. It searched the keyword 'n-ITAC' and selected pathology. A total of 15 consecutive patients were searched. Finally, the present study analyzed a total of 12 n-ITAC patients. The follow-up time was 47 months on average. For low-grade (G1) tumors, 1 and 3-year overall survival (OS) rate were 100 and 85.7% respectively, while for high-grade (G3) tumors, 1 and 3-year OS rates were 80.0 and 20.0% respectively. Pathological grade may be an adverse prognostic factor (P=0.077). The OS of the surgery group was significantly superior to that of the non-surgery group (3-year OS was 63.6 vs. 0%, P=0.0009). Surgery is an indispensable means of treatment. The OS of patients with positive incisal margin was lower compared with that of patients with negative margin (P=0.186), suggesting that complete resection may be one of the prognostic factors. Patients with high risk factors received radiotherapy. The radiation dose was 66-70 Gy/33F for patients with positive margin or non-operation and was 60 Gy/28F for those with negative margin. Most of the patients received prophylactic irradiation of cervical area. Therefore, the prognosis of pathological high-grade n-ITAC is poor. Surgery is the most effective and an indispensable treatment for n-ITAC. For patients with high risk factors, surgery combined with radiotherapy may be a reasonable treatment. With regard to the cover range of radiotherapy, the primary tumor combined with lymph node drainage area is often used in Nanfang Hospital of Southern Medical University and the total dose of radiotherapy can be reduced if the surgical margin is negative.

15.
Pathol Res Pract ; 243: 154372, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36796200

RESUMEN

BACKGROUND: Much research has focused on detecting microsatellite instability (MSI), which is frequently employed in the diagnosis and treatment of patients with colon cancer. However, the causes and progression of MSI in colon cancer have not yet been thoroughly elucidated. In this study, we screened and validated the genes associated with MSI in colorectal adenocarcinoma (COAD) using bioinformatics analysis. METHODS: MSI-related genes of COAD were obtained from the Gene Expression Omnibus dataset, Search Tool for the Retrieval of Interaction Gene/Proteins, Gene Set Enrichment Analysis, and Human Protein Atlas. The function, prognostic value, and immune connection of MSI-related genes in COAD were examined using Cytoscape 3.9.1, the Human Gene Database, and the Tumor IMmune Estimation Resource. Key genes were verified using The Cancer Genome Atlas database and immunohistochemistry of clinical tumor samples. RESULTS: We identified 59 MSI-related genes in patients with colon cancer. The protein interaction network of these genes was developed, and numerous functional modules associated with MSI were discovered. Pathways related to MSI were identified using KEGG enrichment analysis, and these included chemokine signaling, thyroid hormone synthesis, cytokine receptor interaction, estrogen signaling, and Wnt signaling pathways. Further analyses were used to identify the MSI-related gene, glutathione peroxidase 2 (GPX2), which was closely related to the occurrence of COAD and tumor immunity. CONCLUSIONS: In COAD, GPX2 may be crucial for the establishment of MSI and tumor immunity, and its deficiency may result in MSI and immune cell infiltration in colon cancer.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Glutatión Peroxidasa , Humanos , Neoplasias del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Glutatión Peroxidasa/genética , Inestabilidad de Microsatélites , Proteínas/genética
16.
Plant Sci ; 326: 111501, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36257410

RESUMEN

α-Farnesene accumulated in tea plants following infestations by most insects, and mechanical wounding is the common factor. However, the specific mechanism underlying the wounding-regulated accumulation of α-farnesene in tea plants remains unclear. In this study, we observed that histone deacetylase inhibitor treatment induced the accumulation of α-farnesene. The histone deacetylase CsHDA6 interacted directly with CsMYC2, which was an important transcription factor in the jasmonic acid (JA) pathway, and co-regulated the expression of the key α-farnesene synthesis gene CsAFS. Wounding caused by insect infestation affected CsHDA6 production at the transcript and protein levels, while also inhibited the binding of CsHDA6 to the CsAFS promoter. The resulting increased acetylation of histones H3/H4 in CsAFS enhanced the expression of CsAFS and the accumulation of α-farnesene. In conclusion, our study demonstrated the effect of histone acetylation on the production of tea plant HIPVs and revealed the importance of the CsHDA6-CsMYC2 transcriptional regulatory module.


Asunto(s)
Camellia sinensis , Sesquiterpenos , Animales , Camellia sinensis/genética , Camellia sinensis/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Sesquiterpenos/metabolismo , Insectos
17.
Hortic Res ; 9: uhac158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324644

RESUMEN

Herbivore-induced plant volatiles (HIPVs) help the tea plant (Camellia sinensis) adapt to environmental stress, and they are also quality-related components of tea. However, the upstream mechanism regulating the herbivore-induced expression of volatile biosynthesis genes is unclear, especially at the level of epigenetic regulation. In this study, similar to the effects of a tea green leafhopper infestation, treatments with exogenous jasmonic acid (JA) and histone deacetylase inhibitors significantly increased the (E)-nerolidol content in tea and induced the expression of the associated biosynthesis gene CsNES. Furthermore, a key transcription factor related to JA signaling, myelocytomatosis 2 (CsMYC2), interacted with histone deacetylase 2 (CsHDA2) in vitro and in vivo. A tea green leafhopper infestation inhibited CsHDA2 expression and decreased CsHDA2 abundance. Moreover, the tea green leafhopper infestation increased H3 and H4 acetylation levels in the promoter region of CsNES, which in turn upregulated the expression of CsNES and increased the (E)-nerolidol content. In this study, we revealed the effects of histone acetylations on the accumulation of HIPVs, while also confirming that CsHDA2-CsMYC2 is an important transcriptional regulatory module for the accumulation of (E)-nerolidol induced by tea green leafhoppers. The results of this study may be useful for characterizing plant aromatic compounds and the main upstream stress-responsive signaling molecules. Furthermore, the study findings will assist researchers clarify the epigenetic regulation influencing plant secondary metabolism in response to external stress.

18.
Food Res Int ; 161: 111824, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192959

RESUMEN

The diverse tea (Camellia sinensis) germplasms in China include those that specifically accumulate metabolites, such as anthocyanin, catechin, amino acid, caffeine, aroma compound, and chlorophyll. There is interest in the derived products because of special flavor quality or high efficacy activity. This review describes the characteristics of specific tea germplasms and associated regulatory mechanisms. High expression levels of the corresponding biosynthetic genes lead to the substantial accumulation of anthocyanins. The increased metabolic flux from anthocyanins to galloylated catechins is responsible for the occurrence of high-catechin germplasms. The precursor ethylamine determines the differential abundance of l-theanine between tea and other plants. The high amino acid contents in albino germplasms are the result of decreased l-theanine hydrolysis. In low-caffeine tea germplasms, caffeine synthase genes are minimally expressed or mutated. High-aroma germplasms are associated with an increase in the precursors or strong stress-induced responses. Enhanced chloroplast and chlorophyll synthesis is a hallmark of the high-chlorophyll germplasms. Overall, biosynthetic metabolism might have contributed to the occurrence of specific tea germplasms. Furthermore, elucidation the deeper molecular mechanisms in specific tea germplasms are significant and urgent. The information will enhance our understanding of the metabolic activities in tea plants, with implications for tea breeding.


Asunto(s)
Camellia sinensis , Catequina , Antocianinas/análisis , Cafeína/análisis , Camellia sinensis/química , Catequina/análisis , Clorofila/análisis , Etilaminas/análisis , Etilaminas/metabolismo , Fitomejoramiento , Hojas de la Planta/química , Té/metabolismo
19.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36230769

RESUMEN

Immunotherapy modulating the tumor microenvironment (TME) immune function has a promising effect on various types of cancers, but it remains as a limited efficacy in colon cancer. Midostaurin (PKC412) has been used in the clinical treatment of fms-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia and has demonstrated immunomodulatory activity. We aimed to evaluate the effect of midostaurin on the modulation of TME and the efficacy of anti-programmed cell death protein 1 (PD-1) against colon cancer. Midostaurin inhibited the growth of murine CT26 and human HCT116 and SW480 cells with multinucleation and micronuclei formation in morphology examination. The cell cycle arrested in the G2/M phase and the formation of the polyploid phase was noted. The formation of cytosolic DNA, including double-strand and single-strand DNA, was increased. Midostaurin increased mRNA expressions of cGAS, IRF3, and IFNAR1 in colorectal adenocarcinoma cells and mouse spleen macrophages. The protein expressions of Trex-1, c-KIT, and Flt3, but not PKCα/ß/γ and VEGFR1, were down-regulated in midostaurin-treated colorectal adenocarcinoma cells and macrophages. Trex-1 protein expression was abrogated after FLT3L activation. In vivo, the combination of midostaurin and anti-PD-1 exhibited the greatest growth inhibition on a CT26-implanted tumor without major toxicity. TME analysis demonstrated that midostaurin alone decreased Treg cells and increased neutrophils and inflammatory monocytes. NKG2D+ and PD-1 were suppressed and M1 macrophage was increased after combination therapy. When combined with anti-PD-1, STING and INFß protein expression was elevated in the tumor. The oral administration of midostaurin may have the potential to enhance anti-PD-1 efficacy, accompanied by the modulation of cytosolic DNA-sensing signaling and tumor microenvironment.

20.
Biomed Res Int ; 2022: 6968641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789645

RESUMEN

Studies have shown that resveratrol (Res) exerts significant antiproliferative effects in cancer, and regulating the expression of microRNAs (miRNAs) is one the underlying mechanisms of these effects. Overexpression of miR-155-5p leads to oncogenesis. However, it is unclear whether Res exerts antitumor effects by regulating the expression of miR-155-5p, and its specific mechanism in gastric cancer remains unknown. In this study, qRT-PCR was performed to assess the expression of miR-155-5p in gastric cells and clinical tissues, and the MTT assay, plate clone formation test, cell scratch test, Transwell assay, and flow cytometry were performed to investigate the functions of Res on the growth of gastric cancer cells after treatment with miR-155-5p. Western blot analysis was performed to detect the expression of claudin 1, c-Myc, cyclin D1, Bcl-2, and caspase-3 proteins in gastric cancer cell lines after treatment with miR-155-5p and Res. We found that miR-155-5p was overexpressed in gastric cancer cells and clinical tissues, while Res inhibited gastric cancer cell growth by regulating miR-155-5p expression. The results of MTT assay, plate clone formation test, cell scratch test, Transwell test, and flow cytometry showed that miR-155-5p promoted the proliferation, invasion, and metastasis of gastric cancer cell lines and inhibited apoptosis, while Res addition inhibited this effect (P < 0.05). When miR-155-5p was overexpressed, the expressions of claudin 1, c-Myc, cyclin D1, and Bcl-2 were upregulated and that of caspase-3 was downregulated. Collectively, these results suggest that miR-155-5p may be a therapeutic target in gastric cancer, and Res may be a potential therapeutic agent based on its regulation of miR-155-5p.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Claudina-1/metabolismo , Ciclina D1/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Resveratrol/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...