Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 12(15): 3710-3718, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38529668

RESUMEN

Meeting the demand for efficient photosensitizers in photodynamic therapy (PDT), a series of iridium(III) complexes decorated with silicane-modified rhodamine (Si-rhodamine) was meticulously designed and synthesized. These complexes demonstrate exceptional PDT potential owing to their strong absorption in the near-infrared (NIR) spectrum, particularly responsive to 808 nm laser stimulation. This feature is pivotal, enabling deep-penetration laser excitation and overcoming depth-related challenges in clinical PDT applications. The molecular structures of these complexes allow for reliable tuning of singlet oxygen generation with NIR excitation, through modification of the cyclometalating ligand. Notably, one of the complexes (4) exhibits a remarkable ROS quantum yield of 0.69. In vivo results underscore the efficacy of 4, showcasing significant tumor regression at depths of up to 8.4 mm. This study introduces a promising paradigm for designing photosensitizers capable of harnessing NIR light effectively for deep PDT applications.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Silanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Iridio/farmacología , Iridio/química , Rodaminas , Línea Celular Tumoral , Rayos Infrarrojos
2.
Inorg Chem ; 63(13): 5872-5884, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38498970

RESUMEN

The efficacy of photodynamic therapy (PDT) is highly dependent on the photosensitizer features. The reactive oxygen species (ROS) generated by photosensitizers is proven to be associated with immunotherapy by triggering immunogenic cell death (ICD) as well. In this work, we establish a rhodamine-iridium(III) hybrid model functioning as a photosensitizer to comprehensively understand its performance and potential applications in photodynamic immunotherapy. Especially, the correlation between the ROS generation efficiency and the energy level of the Ir(III)-based excited state (T1'), modulated by the cyclometalating (C∧N) ligand, is systematically investigated and correlated. We prove that in addition to the direct population of the rhodamine triplet state (T1) formed through the intersystem crossing process with the assistance of a heavy Ir(III) metal center, the fine-tuned T1' state could act as a relay to provide an additional pathway for promoting the cascade energy transfer process that leads to enhanced ROS generation ability. Moreover, type I ROS can be effectively produced by introducing sulfur-containing thiophene units in C∧N ligands, providing a stronger M1 macrophage-activation efficiency under hypoxia to evoke in vivo antitumor immunity. Overall, our work provides a fundamental guideline for the molecular design and exploration of advanced transition-metal-based photosensitizers for biomedical applications.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Iridio , Especies Reactivas de Oxígeno/metabolismo , Ligandos , Rodaminas/farmacología , Línea Celular Tumoral , Fototerapia
3.
Commun Chem ; 5(1): 159, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36698025

RESUMEN

In contrast to the extensively studied dirhodium(II) complexes and iridium(III) complexes, neutral or dicationic dinuclear iridium(II) complexes with an unsupported ligand are underdeveloped. Here, a series of tetracationic dinuclear iridium(II) complexes, featuring the unsupported Ir(II)-Ir(II) single bond with long bond distances (2.8942(4)-2.9731(4) Å), are synthesized and structurally characterized. Interestingly, compared to the previous unsupported neutral or dicationic diiridium(II) complexes, our DFT and high-level DLPNO-CCSD(T) results found the largest binding energy in these tetracationic complexes even with the long Ir(II)-Ir(II) bond. Our study further reveals that London dispersion interactions enhance the stability cooperatively and significantly to overcome the strong electrostatic repulsion between two half dicationic metal fragments. This class of complexes also exhibit photoluminescence in solution and solid states, which, to our knowledge, represents the first example of this unsupported dinuclear iridium(II) system. In addition, their photoreactivity involving the generation of iridium(II) radical monomer from homolytic cleavage was also explored. The experimental results of photophysical and photochemical behaviours were also correlated with computational studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...