Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Cell Rep ; 43(7): 114465, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38985678

RESUMEN

The pituitary is the central endocrine gland with effects on metabolic dysfunction-associated steatotic liver disease (MASLD). However, it is not clear whether the pituitary responds to free fatty acid (FFA) toxicity, thus dysregulating hepatic lipid metabolism. Here, we demonstrate that decreased prolactin (PRL) levels are involved in the association between FFA and MASLD based on a liver biospecimen-based cohort. Moreover, overloaded FFAs decrease serum PRL levels, thus promoting liver steatosis in mice with both dynamic diet intervention and stereotactic pituitary FFA injection. Mechanistic studies show that excessive FFA sensing in pituitary lactotrophs inhibits the synthesis and secretion of PRL in a cell-autonomous manner. Notably, inhibiting excessive lipid uptake using pituitary stereotaxic virus injection or a specific drug delivery system effectively ameliorates hepatic lipid accumulation by improving PRL levels. Targeted inhibition of pituitary FFA sensing may be a potential therapeutic target for liver steatosis.

2.
J Am Chem Soc ; 146(28): 18979-18988, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950132

RESUMEN

Two-dimensional (2D) hierarchically porous metal-organic framework (MOF) nanoarchitectures with tailorable meso-/macropores hold great promise for enhancing mass transfer kinetics, augmenting accessible active sites, and thereby boosting performance in heterogeneous catalysis. However, achieving the general synthesis of 2D free-standing MOF nanosheets with controllable hierarchical porosity and thickness remains a challenging task. Herein, we present an ingenious "hard" emulsion-induced interface super-assembly strategy for preparing 2D hierarchically porous UiO-66-NH2 nanosheets with highly accessible pore channels, tunable meso-/macropore sizes, and adjustable thicknesses. The methodology relies on transforming the geometric shape of oil droplet templates within appropriate oil-in-water emulsions from conventional zero-dimensional (0D) "soft" liquid spheres to 2D "hard" solid sheets below the oil's melting/freezing point. Subsequent surfactant exchange on the surface of 2D "hard" emulsions facilitates the heterogeneous nucleation and interfacial super-assembly of in situ formed mesostructured MOF nanocomposites, serving as structural units, in a loosely packed manner to produce 2D MOF nanosheets with multimodal micro/meso-/macroporous systems. Importantly, this strategy can be extended to prepare other 2D hierarchically porous MOF nanosheets by altering metal-oxo clusters and organic ligands. Benefiting from fast mass transfer and highly accessible Lewis acidic sites, the resultant 2D hierarchically porous UiO-66-NH2 nanosheets deliver a fabulous catalytic yield of approximately 96% on the CO2 cycloaddition of glycidyl-2-methylphenyl ether, far exceeding the yield of approximately 29% achieved using conventional UiO-66-NH2 microporous crystals. This "hard" emulsion-induced interface super-assembly strategy paves a new path toward the rational construction of elaborate 2D nanoarchitecture of hierarchical MOFs with tailored physicochemical properties for diverse potential applications.

3.
Nat Commun ; 15(1): 5603, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961073

RESUMEN

Acute myocardial infarction (AMI) has become a public health disease threatening public life safety due to its high mortality. The lateral-flow assay (LFA) of a typical cardiac biomarker, troponin I (cTnI), is essential for the timely warnings of AMI. However, it is a challenge to achieve an ultra-fast and highly-sensitive assay for cTnI (hs-cTnI) using current LFA, due to the limited performance of chromatographic membranes. Here, we propose a barbed arrow-like structure membrane (BAS Mem), which enables the unidirectional, fast flow and low-residual of liquid. The liquid is rectified through the forces generated by the sidewalls of the barbed arrow-like grooves. The rectification coefficient of liquid flow on BAS Mem is 14.5 (highest to date). Using BAS Mem to replace the conventional chromatographic membrane, we prepare batches of lateral-flow strips and achieve LFA of cTnI within 240 s, with a limit of detection of 1.97 ng mL-1. The lateral-flow strips exhibit a specificity of 100%, a sensitivity of 93.3% in detecting 25 samples of suspected AMI patients. The lateral-flow strips show great performance in providing reliable results for clinical diagnosis, with the potential to provide early warnings for AMI.


Asunto(s)
Infarto del Miocardio , Troponina I , Troponina I/metabolismo , Troponina I/sangre , Troponina I/análisis , Humanos , Infarto del Miocardio/diagnóstico , Membranas Artificiales , Límite de Detección , Biomarcadores/sangre , Sensibilidad y Especificidad
4.
Small ; : e2403710, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884192

RESUMEN

Topological materials carrying topological surface states (TSSs) have extraordinary carrier mobility and robustness, which provide a new platform for searching for efficient hydrogen evolution reaction (HER) electrocatalysts. However, the majority of these TSSs originate from the sp band of topological quantum catalysts rather than the d band. Here, based on the density functional theory calculation, it is reported a topological semimetal Pd3Sn carrying TSSs mainly derived from d orbital and proposed that optimizing surface state electrons of Pd3Sn by introduction heteroatoms (Ni) can promote hybridization between hydrogen atoms and electrons, thereby reducing the Gibbs free energy (ΔGH) of adsorbed hydrogen and improving its HER performance. Moreover, this is well verified by electrocatalytic experiment results, the Ni-doped Pd3Sn (Ni0.1Pd2.9Sn) show much lower overpotential (-29 mV vs RHE) and Tafel slope (17 mV dec-1) than Pd3Sn (-39 mV vs RHE, 25 mV dec-1) at a current density of 10 mA cm-2. Significantly, the Ni0.1Pd2.9Sn nanoparticles exhibit excellent stability for HER. The electrocatalytic activity of Ni0.1Pd2.9Sn nanoparticles is superior to that of commercial Pt. This work provides an accurate guide for manipulating surface state electrons to improve the HER performance of catalysts.

5.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727344

RESUMEN

Tellurium exhibits exceptional intrinsic electronic properties. However, investigations into the modulation of tellurium's electronic properties through physical modification are notably scarce. Here, we present a comprehensive study focused on the evolution of the electronic properties of tellurium crystal flakes under plasma irradiation treatment by employing conductive atomic force microscopy and Raman spectroscopy. The plasma-treated tellurium experienced a process of defect generation through lattice breaking. Prior to the degradation of electronic transport performance due to plasma irradiation treatment, we made a remarkable observation: in the low-energy region of hydrogen plasma-treated tellurium, a notable enhancement in conductivity was unexpectedly detected. The mechanism underlying this enhancement in electronic transport performance was thoroughly elucidated by comparing it with the electronic structure induced by argon plasma irradiation. This study not only fundamentally uncovers the effects of plasma irradiation on tellurium crystal flakes but also unearths an unprecedented trend of enhanced electronic transport performance at low irradiation energies when utilizing hydrogen plasma. This abnormal trend bears significant implications for guiding the prospective application of tellurium-based 2D materials in the realm of electronic devices.

6.
Front Psychol ; 15: 1383042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601824

RESUMEN

Background: Research on the association between sugar-sweetened beverages (SSBs) consumption and sleep quality with anxiety symptoms has been highly emphasized. However, past studies have focused on college students in plains areas, while fewer research studies have been conducted on Tibetan college students at high altitudes. Whether this association changes due to ethnicity or altitude is unclear. The present study will contribute to the prevention and intervention of depressive symptoms among Tibetan college students at high altitude. Methods: A self-assessment questionnaire was administered to 3,026 university students (1,491 boys students, 49.27%) on SSBs consumption, sleep quality and anxiety symptoms status in the Tibetan Plateau, a high-altitude region of China. Logistic regression analysis and ordered logistic regression analysis in generalized linear model were used to analyze the association between SSBs consumption and sleep quality with anxiety symptoms. Results: The prevalence of anxiety symptoms among Tibetan college students at high altitude was 26.9%. SSBs consumption of ≤1 times/week, 2-5 times/week, and ≥ 6 times/week were 20.7, 28.1, and 45.7%, respectively, with statistically significant differences (χ2 value of 134.353, p < 0.001). Anxiety detection rates for Sleep quality of Good (PSQI ≤5), Moderate (PSQI 6-7), and Poor (PSQI >7) were 16.8, 19.8, and 32.0%, respectively, and the difference was also statistically significant (χ2 value was 73.761, p < 0.001). The ordered logistic regression analysis in the generalized linear model showed that, overall, the group of college students with SSBs ≤1 times/week and sleep quality of Good served as the reference group, and the group with SSBs ≥6 times/week and sleep quality of Poor (OR: 5.06, 95% CI: 3.75-6.83) had the highest risk of anxiety symptoms. Conclusion: SSBs consumption and sleep quality were associated with anxiety symptoms, and there was an interaction effect. Effective control of SSBs consumption and improvement of sleep quality may be important factors in preventing and reducing the occurrence of anxiety symptoms.

7.
ACS Appl Mater Interfaces ; 16(17): 21438-21449, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626407

RESUMEN

Thrombolytic therapy is one of the most effective treatments for thrombus dissolution and recanalization of blocked vessels in thrombotic diseases. However, the application of the thrombolytic strategy has been limited due to unsatisfactory thrombolytic efficacy, relatively higher bleeding complications, and consequently restricted indications. Recombinant staphylokinase (r-SAK) is a third-generation thrombolytic agent produced by genetic engineering technology, which exhibits a better thrombolytic efficacy than urokinase and recombinant streptokinase. Inspired by the natural affinity of platelets in hemostasis and pathological thrombosis, we developed a platelet membrane (PM)-coated r-SAK (PM-r-SAK). Results from animal experiments and human in vitro studies showed that the PM-r-SAK had a thrombolytic efficacy equal to or better than its 4-fold dose of r-SAK. In a totally occluded rabbit femoral artery thrombosis model, the PM-r-SAK significantly shortened the initial recanalization time compared to the same dose and 4-fold dose of r-SAK. Regarding the recanalized vessels, the PM-r-SAK prolonged the time of reperfusion compared to the same dose and 4-fold dose of r-SAK, though the differences were not significant. An in vitro thrombolytic experiment demonstrated that the thrombolytic efficacy of PM-r-SAK could be inhibited by platelet-poor plasma from patients taking aspirin and ticagrelor. PM coating significantly improves the thrombolytic efficacy of r-SAK, which is related to the thrombus-targeting activity of the PM-r-SAK and can be inhibited by aspirin- and ticagrelor-treated plasma.


Asunto(s)
Plaquetas , Fibrinolíticos , Metaloendopeptidasas , Trombosis , Animales , Conejos , Humanos , Trombosis/tratamiento farmacológico , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Fibrinolíticos/química , Fibrinolíticos/uso terapéutico , Fibrinolíticos/farmacología , Metaloendopeptidasas/metabolismo , Terapia Trombolítica , Proteínas Recombinantes/uso terapéutico , Masculino , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos
8.
Biol Res ; 57(1): 13, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561846

RESUMEN

BACKGROUND: Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis. METHODS: The activation model of ESCs was constructed by TGF-ß1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis. RESULTS: We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes. CONCLUSION: Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.


Asunto(s)
Glutamina , Mitocondrias , Femenino , Ratones , Humanos , Animales , Glutamina/metabolismo , Fibrosis , Mitocondrias/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , ARN/metabolismo , Endometrio/metabolismo , Endometrio/patología
9.
Front Plant Sci ; 15: 1346255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439986

RESUMEN

Currently, soil heavy metal contamination is a severe issue, particularly with Cd pollution. The metal tolerance protein (MTP) proteins, as plant divalent cation transporters, play a crucial role in the transport and tolerance of heavy metals in plants. This study conducted comprehensive identification and characterization of the MTP gene family in the tulip. A total of 11 TgMTP genes were identified and phylogenetically classified into three subfamilies. Conserved motif and gene structure analyses unveiled commonalities and variations among subfamily members. Expression profiling demonstrated several TgMTPs were markedly upregulated under Cd exposure, including the TgMTP7.1. Heterologous expression in yeast validated that TgMTP7.1 could ameliorate Cd sensitivity and enhance its tolerance. These results provide primary insights into the MTP gene family in tulip. Phylogenetic relationships and functional analyses establish a framework for elucidating the transporters and molecular mechanisms governing Cd accumulation and distribution in tulip. Key TgMTPs identified, exemplified by TgMTP7.1, may illuminate molecular breeding efforts aimed at developing Cd-tolerant cultivars for the remediation of soil Cd contamination.

10.
J Thromb Thrombolysis ; 57(4): 558-565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38393676

RESUMEN

It is controversial whether hemodialysis affects the efficacy of the antiplatelet agents. We aimed to investigate the impact of hemodialysis on efficacies of the antiplatelet agents in coronary artery disease (CAD) patients complicated with end-stage renal disease (ESRD). 86 CAD patients complicated with ESRD requiring hemodialysis were consecutively enrolled. After 5-day treatment with aspirin and clopidogrel or ticagrelor, the platelet aggregations induced by arachidonic acid (PLAA) or adenosine diphosphate (PLADP), and the P2Y12 reaction unit (PRU) were measured before and after hemodialysis. The propensity matching score method was adopted to generate a control group with normal renal function from 2439 CAD patients. In patients taking aspirin, the PLAA remained unchanged after hemodialysis. In patients taking clopidogrel, the PLADP (37.26 ± 17.04 vs. 31.77 ± 16.09, p = 0.029) and corresponding clopidogrel resistance (CR) rate (23 [48.9%] vs. 14 [29.8%], p = 0.022) significantly decreased after hemodialysis, though PRU remained unchanged. Subgroup analysis indicated that PLADP significantly decreased while using polysulfone membrane (36.8 ± 17.9 vs. 31.1 ± 14.5, p = 0.024). In patients taking ticagrelor, PLADP, and PRU remained unchanged after hemodialysis. ESRD patients had higher incidences of aspirin resistance (AR) and CR compared to those with normal renal function (AR: 16.1% vs. 0%, p = 0.001; CR: 48.4% vs. 24.8%, p = 0.024). Hemodialysis does not have negative effect on the efficacies of aspirin, clopidogrel and ticagrelor in ESRD patients with CAD. ESRD patients have higher incidences of AR and CR compared with those with normal renal function.Trial registration ClinicalTrials.gov Identifier: NCT03330223, first registered January 4, 2018.


Asunto(s)
Enfermedad de la Arteria Coronaria , Fallo Renal Crónico , Humanos , Inhibidores de Agregación Plaquetaria , Clopidogrel , Ticagrelor , Enfermedad de la Arteria Coronaria/terapia , Ticlopidina , Aspirina , Fallo Renal Crónico/complicaciones , Diálisis Renal , Adenosina Difosfato
11.
Sci Rep ; 14(1): 3582, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351120

RESUMEN

To explore the clinical effect of standing bed combined with early anti-gravity running table training in the healing and functional recovery of anterior rotation external rotation ankle fractures. Fifty-two patients with ankle fractures of degree III or degree IV of PER admitted to Pingle Orthopaedic and Traumatology Hospital of Shenzhen City between September 2021 and January 2023 were selected for observation, and they were divided into 26 cases in each group according to the method of randomised numerical table into the control group and the observation group. The patients in the control group started the routine rehabilitation treatment on the 1st day after operation, and in the 0-2 weeks after operation, the affected limb was elevated and ankle pump training was carried out; in the 3-6 weeks after operation, joint mobility training, strength training and soft tissue release were carried out; and in the 6-8 weeks after operation, weight-bearing training was increased. The observation group added standing bed training on the 7th postoperative day and anti-gravity running table training on the 28th postoperative day on the basis of the treatment protocol of the control group. Bone density, ankle mobility and American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scores, pain, ankle mobility and swelling evaluations were compared between the 2 groups before and after 8 weeks of treatment, and the quality scores of bone scabs were compared between the 2 groups after 4 weeks of treatment. There was no statistical significance in the comparison of the items between the two groups before treatment (all P > 0.05), and the difference in the bone scab quality score was not statistically significant after 4 weeks of treatment (P > 0.05), and after 8 weeks of treatment, the bone scab quality score, bone mineral density and AOFAS scores, pain, ankle mobility, and evaluations were higher than those of the control group (all P < 0.05), and there was no significant difference in the degree of swelling (P > 0.05). Standing bed combined with early anti-gravity running table training applied to postoperative patients with PER III or IV degree ankle fracture can reduce the degree of pain and improve the ankle joint function.


Asunto(s)
Fracturas de Tobillo , Carrera , Humanos , Fracturas de Tobillo/cirugía , Articulación del Tobillo/cirugía , Fijación Interna de Fracturas/métodos , Dolor , Estudios Retrospectivos , Resultado del Tratamiento
12.
Int J Cardiol ; 400: 131821, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301829

RESUMEN

BACKGROUND: Non-culprit plaque progression is associated with recurrent cardiac ischemic events and worse clinical outcomes. Given that atherosclerosis is a systemic disease, the pancoronary characteristics of patients with rapid plaque progression are unknown. This study aims to identify pancoronary plaque features in patients with ST-segment elevation myocardial infarction (STEMI) with and without rapid plaque progression, focused on the patient level. METHODS AND RESULTS: From January 2017 to July 2019, 291 patients underwent 3-vessel optical coherence tomography imaging at the time of the primary procedure and a follow-up angiography interval of 12 months. The final analysis included 237 patients. Overall, 308 non-culprit lesions were found in 78 STEMI patients with rapid plaque progression, and 465 non-culprit plaques were found in 159 STEMI patients without rapid plaque progression. These patients had a higher pancoronary vulnerability (CLIMA-defined high-risk plaque: 47.4% vs. 33.3%; non-culprit plaque rupture: 25.6% vs. 14.5%) and a significantly higher prevalence of other vulnerable plaque characteristics (i.e., lipid-rich plaque, cholesterol crystal, microchannels, calcification, spotty calcification, and thrombus) at baseline versus those without rapid plaque progression. Lesions with rapid progression were highly distributed at the LAD, tending to be near the bifurcation. In multivariate analysis, age ≥ 65 years was an independent predictor of subsequent rapid lesion progression at the patient level, whereas microchannel, spotty calcification, and cholesterol crystal were independent predictors for STEMI patients ≥65 years old. CONCLUSIONS: STEMI patients with subsequent rapid plaque progression had higher pancoronary vulnerability and commonly presented vulnerable plaque morphology. Aging was the only predictor of subsequent rapid plaque progression.


Asunto(s)
Placa Aterosclerótica , Infarto del Miocardio con Elevación del ST , Humanos , Anciano , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/complicaciones , Tomografía de Coherencia Óptica/métodos , Angiografía Coronaria , Placa Aterosclerótica/complicaciones , Colesterol , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología
13.
Sci Adv ; 10(4): eadh2598, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38266090

RESUMEN

Candidate cardiomyocyte (CM) mitogens such as those affecting the extracellular signal-regulated kinase (ERK) signaling pathway represent potential targets for functional heart regeneration. We explored whether activating ERK via a constitutively active mutant of B-raf proto-oncogene (BRAF), BRAF-V600E (caBRAF), can induce proproliferative effects in neonatal rat engineered cardiac tissues (ECTs). Sustained CM-specific caBRAF expression induced chronic ERK activation, substantial tissue growth, deficit in sarcomeres and contractile function, and tissue stiffening, all of which persisted for at least 4 weeks of culture. caBRAF-expressing CMs in ECTs exhibited broad transcriptomic changes, shift to glycolytic metabolism, loss of connexin-43, and a promigratory phenotype. Transient, doxycycline-controlled caBRAF expression revealed that the induction of CM cycling is rapid and precedes functional decline, and the effects are reversible only with short-lived ERK activation. Together, direct activation of the BRAF kinase is sufficient to modulate CM cycling and functional phenotype, offering mechanistic insights into roles of ERK signaling in the context of cardiac development and regeneration.


Asunto(s)
Miocardio , Proteínas Proto-Oncogénicas B-raf , Animales , Ratas , Proteínas Proto-Oncogénicas B-raf/genética , Miocitos Cardíacos , Quinasas MAP Reguladas por Señal Extracelular , Transducción de Señal
14.
Int J Biol Macromol ; 260(Pt 1): 129245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38191109

RESUMEN

Aerogels with low thermal conductivity and high adsorption capacity present a promising solution to curb water pollution caused by organic reagents as well as mitigate heat loss. Although aerogels exhibiting good adsorption capacity and thermal insulation have been reported, materials with mechanical integrity, high flexibility and shear resistance still pose a formidable task. Here, we produced bacterial cellulose-based ultralight multifunctional hybrid aerogels by using freeze-drying followed by chemical vapor deposition silylation method. The hybrid aerogels displayed a low density of 10-15 mg/cm3, high porosity exceeding 99.1 %, low thermal conductivity (27.3-29.2 mW/m.K) and superior hydrophobicity (water contact angle>120o). They also exhibited excellent mechanical properties including superelasticity, high flexibility and shear resistance. The hybrid aerogels demonstrated high heat shielding efficiency when used as an insulating material. As a selective oil absorbent, the hybrid aerogels exhibit a maximum adsorption capacity of up to approximately 156 times its own weight and excellent recoverability. Especially, the aerogel's highly accessible porous microstructure results in an impressive flux rate of up to 162 L/h.g when used as a filter in a continuous oil-water separator to isolate n-hexane-water mixtures. This work presents a novel endeavor to create high-performance, sustainable, reusable, and adaptable multifunctional aerogels.


Asunto(s)
Celulosa , Gases , Adsorción , Liofilización , Calor
15.
Phys Med Biol ; 69(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38170992

RESUMEN

This study developed a prototype for a rotational cone-beam x-ray luminescence computed tomography (CB-XLCT) system, considering its potential application in pre-clinical theranostic imaging. A geometric calibration method applicable to both imaging chains (XL and CT) was also developed to enhance image quality. The results of systematic performance evaluations were presented to assess the feasibility of commercializing XLCT technology. Monte Carlo GATE simulation was performed to determine the optimal imaging conditions for nanophosphor particles (NPs) irradiated by 70 kV x-rays. We acquired a low-dose transmission x-ray tube and designed a prone positioning platform and a rotating gantry, using mice as targets from commercial small animalµ-CT systems. We then employed the image cross-correlation (ICC) automatic geometric calibration method to calibrate XL and CT images. The performance of the system was evaluated through a series of phantom experiments with a linearity of 0.99, and the contrast-to-noise ratio (CNR) between hydroxyl-apatite (HA) and based epoxy resin is 19.5. The XL images of the CB-XLCT prototype achieved a Dice similarity coefficient (DICE) of 0.149 for a distance of 1 mm between the two light sources. Finally, the final XLCT imaging results were demonstrated using the Letter phantoms with NPs. In summary, the CB-XLCT prototype developed in this study showed the potential to achieve high-quality imaging with acceptable radiation doses for small animals. The performance of CT images was comparable to current commercial machines, while the XL images exhibited promising results in phantom imaging, but further efforts are needed for biomedical applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Luminiscencia , Animales , Ratones , Rayos X , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada de Haz Cónico/métodos , Fantasmas de Imagen
16.
PLoS One ; 19(1): e0295008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241287

RESUMEN

OBJECTIVES: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive decline in cognitive and behavioral function. Studies have shown that genetic factors are one of the main causes of AD risk. genome-wide association study (GWAS), as a novel and effective tool for studying the genetic risk of diseases, has attracted attention from researchers in recent years and a large number of studies have been conducted. This study aims to summarize the literature on GWAS in AD by bibliometric methods, analyze the current status, research hotspots and future trends in this field. METHODS: We retrieved articles on GWAS in AD published between 2002 and 2022 from Web of Science. CiteSpace and VOSviewer software were applied to analyze the articles for the number of articles published, countries/regions and institutions of publication, authors and cited authors, highly cited literature, and research hotspots. RESULTS: We retrieved a total of 2,751 articles. The United States had the highest number of publications in this field, and Columbia University was the institution with the most published articles. The identification of AD-related susceptibility genes and their effects on AD is one of the current research hotspots. Numerous risk genes have been identified, among which APOE, CLU, CD2AP, CD33, EPHA1, PICALM, CR1, ABCA7 and TREM2 are the current genes of interest. In addition, risk prediction for AD and research on other related diseases are also popular research directions in this field. CONCLUSION: This study conducted a comprehensive analysis of GWAS in AD and identified the current research hotspots and research trends. In addition, we also pointed out the shortcomings of current research and suggested future research directions. This study can provide researchers with information about the knowledge structure and emerging trends in the field of GWAS in AD and provide guidance for future research.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Transportadoras de Casetes de Unión a ATP , Bibliometría , Instituciones de Salud
17.
Small ; 20(13): e2307040, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967337

RESUMEN

The practical application of Li-S batteries is still severely restricted by poor cyclic performance caused by the intrinsic polysulfides shuttle effect, which is even more severe under the high-temperature condition owing to the inevitable increase of polysulfides' solubility and diffusion rate. Herein, tungsten-doped vanadium dioxide (W-VO2) micro-flowers are employed with first-order metal-insulator phase transition (MIT) property as a robust and multifunctional modification layer to hamper the shuttle effect and simultaneously improve the thermotolerance of the common separator. Tungsten doping significantly reduces the transition temperature from 68 to 35 °C of vanadium dioxide, which renders the W-VO2 easier to turn from the insulating monoclinic phase into the metallic rutile phase. The systematic experiments and theoretical analysis demonstrate that the temperature-induced in-suit MIT property endows the W-VO2 catalyst with strong chemisorption against polysulfides, low energy barrier for liquid-to-solid conversion, and outstanding diffusion kinetics of Li-ion under high temperatures. Benefiting from these advantages, the Li-S batteries with W-VO2 modified separator exhibit significantly improved rate and long-term cyclic performance under 50 °C. Remarkably, even at an elevated temperature (80 °C), they still exhibit superior electrochemical performance. This work opens a rewarding avenue to use phase-changing materials for high-temperature Li-S batteries.

18.
Diabetes Obes Metab ; 26(3): 840-850, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37994378

RESUMEN

AIMS: To characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction, and further investigate the associations between the most significant indicator and cognitive function, along with related cerebral alterations. MATERIALS AND METHODS: We performed a cross-sectional study in 449 subjects with type 2 diabetes who completed continuous glucose monitoring and cognitive assessments. Of these, 139 underwent functional magnetic resonance imaging to evaluate cerebral structure and olfactory neural circuit alterations. Relative weight and Sobol's sensitivity analyses were employed to characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction. RESULTS: Complexity of glucose time series index (CGI) was found to have a more pronounced association with mild cognitive impairment (MCI) compared to glycated haemoglobin, time in range, and standard deviation. The proportion and multivariable-adjusted odds ratios (ORs) for MCI increased with descending CGI tertile (Tertile 1: reference group [≥4.0]; Tertile 2 [3.6-4.0] OR 1.23, 95% confidence interval [CI] 0.68-2.24; Tertile 3 [<3.6] OR 2.27, 95% CI 1.29-4.00). Decreased CGI was associated with cognitive decline in executive function and attention. Furthermore, individuals with decreased CGI displayed reduced olfactory activation in the left orbitofrontal cortex (OFC) and disrupted functional connectivity between the left OFC and right posterior cingulate gyrus. Mediation analysis demonstrated that the left OFC activation partially mediated the associations between CGI and executive function. CONCLUSION: Decreased glucose complexity closely relates to cognitive dysfunction and olfactory brain activation abnormalities in diabetes.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Glucosa , Factores de Tiempo , Estudios Transversales , Automonitorización de la Glucosa Sanguínea , Glucemia , Cognición , Disfunción Cognitiva/etiología , Imagen por Resonancia Magnética/métodos , Encéfalo/patología
19.
Small ; 20(21): e2309956, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38145329

RESUMEN

Lateral-flow assay (LFA) is one of the most commonly used detection technologies, in which the chromatographic membranes are currently used as the lateral-flow membrane (e.g., nitrocellulose membrane, NC Mem). However, several disadvantages of existing chromatographic membranes limit the performance of LFA, including relatively low flow velocity of sample solution and relatively more residuals of sample on membrane, which increase detection time and detection noise. Herein, a surface structure membrane (SS Mem) is proposed, which enables fast self-transport of water with a convection manner and realizes low residuals of sample on membrane surface after the flow. On SS Mem, the flow velocity of water is 7.1-fold higher, and the residuals of sample are decreased by 60-67%, comparing those in NC Mem. SS Mem is used as lateral-flow membrane to prepare lateral-flow strips of nanogold LFA and fluorescence LFA for rapid detection of SARS CoV-2 nucleocapsid protein. These LFAs require 210 s per detection, with limits of detection of 3.98 pg mL-1 and 53.3 fg mL-1, sensitivity of 96.5%, and specificity of 90%. The results suggest that SS Mem enables ultrafast, highly sensitive lateral-flow immunoassays and shows great potential as a new type of lateral-flow membrane to broaden the application of LFA.


Asunto(s)
SARS-CoV-2 , Agua , Agua/química , SARS-CoV-2/aislamiento & purificación , Membranas Artificiales , COVID-19 , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Humanos
20.
J Adv Res ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38061426

RESUMEN

BACKGROUND: The reportedly high mutation rate of mitochondrial DNA (mtDNA) may be attributed to the absence of histone protection and complete repair mechanisms. Mitochondrial heteroplasmy refers to the coexistence of wild-type and mutant mtDNA. Most healthy individuals carry a low point mutation load (<1 %) in their mtDNA, typically without any discernible phenotypic effects. However, as it exceeds a certain threshold, it may cause the onset of various diseases. Since the ovary is a highly energy-intensive organ, it relies heavily on mitochondrial function. Mitochondrial heteroplasmy can potentially contribute to a variety of significant ovarian disorders. AIM OF REVIEW: In this review, we have elucidated the close relationship between mtDNA heteroplasmy and ovarian diseases, and summarized novel avenues and strategies for the potential treatment of these ovarian diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: Mitochondrial heteroplasmy can potentially contribute to a variety of significant ovarian disorders, including polycystic ovary syndrome, premature ovarian insufficiency, and endometriosis. Current strategies related to mitochondrial heteroplasmy are untargeted and have low bioavailability. Nanoparticle delivery systems loaded with mitochondrial modulators, mitochondrial replacement/transplantation therapy, and mitochondria-targeted gene editing therapy may offer promising paths towards potentially more effective treatments for these diseases, despite ongoing challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...