Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37111576

RESUMEN

The thermoresponsive drug-loaded hydrogels have attracted widespread interest in the field of medical applications due to their ease of delivery to structurally complex tissue defects. However, drug-resistant infections remain a challenge, which has prompted the development of new non-antibiotic hydrogels. To this end, we prepared chitosan-methacrylate (CTSMA)/gelatin (GEL) thermoresponsive hydrogels and added natural phenolic compounds, including tannic acid, gallic acid, and pyrogallol, to improve the efficacy of hydrogels. This hybrid hydrogel imparted initial crosslinking at physiological temperature, followed by photocuring to further provide a mechanically robust structure. Rheological analysis, tensile strength, antibacterial activity against E. coli, S. aureus, P. gingivalis, and S. mutans, and L929 cytotoxicity were evaluated. The experimental results showed that the hybrid hydrogel with CTSMA/GEL ratio of 5/1 and tannic acid additive had a promising gelation temperature of about 37 °C. The presence of phenolic compounds not only significantly (p < 0.05) enhanced cell viability, but also increased the tensile strength of CTSMA/GEL hybrid hydrogels. Moreover, the hydrogel containing tannic acid revealed potent antibacterial efficacy against four microorganisms. It was concluded that the hybrid hydrogel containing tannic acid could be a potential composite material for medical applications.

2.
Polymers (Basel) ; 15(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904517

RESUMEN

The application efficiency of biodegradable polymers used in a natural environment requires improved resistance to ultraviolet (UV) photodegradation. In this report, 1,6-hexanediamine modified layered zinc phenylphosphonate (m-PPZn), utilized as a UV protection additive for acrylic acid-grafted poly(butylene carbonate-co-terephthalate) (g-PBCT), was successfully fabricated and compared to the solution mixing process. Experimental data of both wide-angle X-ray diffraction and transmission electron microscopy reveal that the g-PBCT polymer matrix was intercalated into the interlayer spacing of m-PPZn, which was approximately delaminated in the composite materials. The evolution of photodegradation behavior for g-PBCT/m-PPZn composites was identified using Fourier transform infrared spectroscopy and gel permeation chromatography after being artificially irradiated by a light source. The change of carboxyl group produced via photodegradation was used to show the enhanced UV protection ability of m-PPZn in the composite materials. All results indicate that the carbonyl index of the g-PBCT/m-PPZn composite materials after photodegradation for 4 weeks was extensively lower than that of the pure g-PBCT polymer matrix. These findings were also supported by the decrease in the molecular weight of g-PBCT after photodegradation for 4 weeks, from 20.76% to 8.21%, with the loading of 5 wt% m-PPZn content. Both observations were probably owing to the better UV reflection ability of m-PPZn. This investigation shows, through typical methodology, a significant advantage of fabricating the photodegradation stabilizer to enhance the UV photodegradation behavior of the biodegradable polymer using an m-PPZn compared to other UV stabilizer particles or additives.

3.
Materials (Basel) ; 16(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36676553

RESUMEN

This study found that biochar made from grapevines (GVC), an agricultural waste product, can be used as a nucleating agent to promote the crystallization of polylactic acid (PLA). Differential scanning calorimetry (DSC) analysis of GVC/PLA composites showed that different particle sizes (200 and 100 mesh size) and amounts (1 wt%, 10 wt%) of biochar affect the re-crystallization of PLA, with 200 mesh GVC in the amount of 10 wt% being the most significant. In addition, it was found that there were two peaks related to imperfect and perfect crystals in the Tm part for GVC/PLA composites. TGA analysis showed that adding GVC tends to lower the maximum decomposition temperature of PLA, revealing that GVC may accelerate the degradation reaction of PLA. This research also studied the effects of GVC in various particle sizes and amounts on the mechanical properties and degradation of PLA. The results revealed that the tensile and impact strengths of GVC/PLA composite could reach 79.79 MPa and 22.67 J/m, respectively, and the increments were 41.4% and 32.1%, greater than those of pristine PLA. Moreover, the molecular weight of PLA decreased as the amount of GVC increased. Therefore, GVC particles can be used as reinforcing fillers for PLA to improve its mechanical properties and adjust its molecular weight. These agricultural-waste-reinforced biocomposites can reduce both greenhouse gas (GHG) emissions and the cost of biodegradable polymers and achieve the goals of a circular economy.

4.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679318

RESUMEN

In this study, we positioned three quaternary ammonium halide-containing cellulose derivatives (PQF, PQCl, PQBr) as interfacial modification layers between the nickel oxide (NiOx) and methylammonium lead iodide (MAPbI3) layers of inverted perovskite solar cells (PVSCs). Inserting PQCl between the NiOx and MAPbI3 layers improved the interfacial contact, promoted the crystal growth, and passivated the interface and crystal defects, thereby resulting in MAPbI3 layers having larger crystal grains, better crystal quality, and lower surface roughness. Accordingly, the photovoltaic (PV) properties of PVSCs fabricated with PQCl-modified NiOx layers were improved when compared with those of the pristine sample. Furthermore, the PV properties of the PQCl-based PVSCs were much better than those of their PQF- and PQBr-based counterparts. A PVSC fabricated with PQCl-modified NiOx (fluorine-doped tin oxide/NiOx/PQCl-0.05/MAPbI3/PC61BM/bathocuproine/Ag) exhibited the best PV performance, with a photoconversion efficiency (PCE) of 14.40%, an open-circuit voltage of 1.06 V, a short-circuit current density of 18.35 mA/cm3, and a fill factor of 74.0%. Moreover, the PV parameters of the PVSC incorporating the PQCl-modified NiOx were further enhanced when blending MAPbI3 with PQCl. We obtained a PCE of 16.53% for this MAPbI3:PQCl-based PVSC. This PQCl-based PVSC retained 80% of its initial PCE after 900 h of storage under ambient conditions (30 °C; 60% relative humidity).

5.
Polymers (Basel) ; 14(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298038

RESUMEN

In this study, a series of low dielectric constant and transmission loss of polyimide (PI)/organically modified hollow silica nanofiber (m-HSNF) nanocomposites were synthesized via two-step polymerization. Two different PIs were fabricated using two types of diamine monomers with or without fluorine-containing groups and biphenylene structure of dianhydride. The chemical structure and morphology of the fabricated composites were characterized using Nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and field-emission scanning electron microscopy (FESEM). The two-step polymerization process successfully manufactured and converted from polyamic acid to polyimide after thermal imidization was proved by the NMR and FTIR results. The FESEM and their related energy-dispersive X-ray spectroscopy (EDS) images of nanocomposites indicate that the m-HSNF is extremely dispersed into the polyimide matrix. The high-frequency dielectric constants of the nanocomposite materials decrease as the presence of fluorine-containing groups in diamine monomers and the loadings of the m-HSNF increase. These findings are probably attributed to the presence of the steric hindrance effect brought by trifluoromethyl groups, and the m-HSNF can disrupt the chain packing and increase the free volume, thus reducing the dielectric properties of polyimides. The transmission loss and its related uncertainty of fabricated composite materials contain excellent performance, suggesting that the fabricated materials could be used as substrate materials for 5G printed circuit board.

6.
Polymers (Basel) ; 14(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35808787

RESUMEN

New sequences of nanocomposites including numerous maleic acid-grafted poly(butylene adipate-co-terephthalate) (g-PBAT) and cellulose nanocrystals (CNC) were efficaciously fabricated via transesterification and polycondensation processes with the covalent bonds between the polymer and reinforcing fillers. The grafting interaction of maleic acid onto PBAT was successfully demonstrated using Fourier transform infrared (FTIR) and 13C-nuclear magnetic resonance (NMR) spectra. The morphology of g-PBAT/CNC nanocomposites was investigated by wide-angle X-ray diffraction and transmission electron microscopy. Both results indicate that the CNC was randomly dispersed into the g-PBAT polymer matrix. The storage modulus at -80 and 25 °C was significantly enhanced with the incorporation of CNC into g-PBAT matrix. The crystallization rate of g-PBAT/CNC nanocomposites increased as the loading of CNC increased. With the incorporation of 3 wt% CNC, the half-time for crystallization of the g-PBAT/CNC composite decreased about 50~80% as compared with the same isothermal crystallization of pure polymer matrix. All water vapor permeation (WVP) values of all g-PBAT/CNC nanocomposites decreased as the loading of CNC increased. The decrease in WVP may be attributed to the addition of stiff CNC, causing the increase on the permeation route in the water molecules in the g-PBAT polymer matrix.

7.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214469

RESUMEN

Hollow carbon-coated In2O3 (C#In2O3) nanofibers were prepared using an efficiently combined approach of electrospinning, high-temperature calcination, and hydrothermal process. The polyaniline (PANI)/hollow C#In2O3 nanofiber composites were synthesized used hollow C#In2O3 nanofibers worked as a core through the in situ chemical oxidative polymerization. The morphology and crystalline structure of the PANI/hollow C#In2O3 nanofiber composite were identified using wide-angle X-ray diffraction and transmission electron microscopy. The gas-sensing performances of the fabricated PANI/hollow C#In2O3 nanofiber composite sensor were estimated at room temperature, and the response value of the composite sensor with an exposure of 1 ppm NH3 was 18.2, which was about 5.74 times larger than that of the pure PANI sensor. The PANI/hollow C#In2O3 nanofiber composite sensor was demonstrated to be highly sensitive to the detection of NH3 in the concentration range of 0.6~2.0 ppm, which is critical for kidney or hepatic disease detection from the human breath. This composite sensor also displayed superior repeatability and selectivity at room temperature with exposures of 1.0 and 2.0 ppm NH3. Because of the outstanding repeatability and selectivity to the detection of NH3 at 1.0 and 2.0 ppm confirmed in this investigation, the PANI/hollow C#In2O3 nanofiber composite sensor will be considered as a favorable gas-sensing material for kidney or hepatic disease detection from human breath.


Asunto(s)
Amoníaco , Nanofibras , Compuestos de Anilina , Carbono , Humanos , Indio , Nanofibras/química , Temperatura
8.
Polymers (Basel) ; 14(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35160479

RESUMEN

Novel and biodegradable acrylic acid-grafted poly(1,4-butylene adipate-co-terephthalate)/organically modified layered double hydroxide (g-PBAT/m-LDH) nanocomposites were synthesized through the polycondensation and transesterification process, with the covalent linkages between the polymer and the inorganic materials. X-ray diffraction and transmission electron microscopy were used to characterize the structure and morphology of the g-PBAT/m-LDH nanocomposites. The experimental results show that the m-LDH was exfoliated and widely distributed in the g-PBAT matrix. The addition of m-LDH into the g-PBAT extensively improved the storage modulus at -90 °C, when compared to that of the pure g-PBAT matrix. The effects of the minor comonomer of the butylene terephthalate (BT) unit and the addition of m-LDH on the crystallization behavior, and the polymorphic crystals of the g-PBAT at numerous crystallization temperatures, were examined, using a differential scanning calorimeter (DSC). The data indicate that the minor comonomer of the BT unit into g-PBAT can significantly change the starting formation temperatures of the α-form and ꞵ-form crystals, while a change in the starting formation temperatures of the α-form and ꞵ-form crystals using the addition of m-LDH into g-PBAT is not evident.

9.
Polymers (Basel) ; 13(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34771232

RESUMEN

Hollow indium trioxide (In2O3) nanofibers fabricated via an effectively combined method of electrospinning and high-temperature calcination were coated with nitrogen-doped graphene quantum dots (N-GQDs) prepared by a hydrothermal process through electrostatic interaction. The N-GQD-coated hollow In2O3 nanofibers served as a core for the synthesis of polyaniline (PANI)/N-GQD/hollow In2O3 nanofiber ternary composites using in situ chemical oxidative polymerization. The chemical structure and morphology of the fabricated ternary composites were characterized using Fourier transform infrared, field-emission scanning electron microscopy, and transmission electron microscopy. The gas-sensing performances of the ternary composites were estimated by a homemade dynamic test system which was supplied with a real-time resistance acquisition platform at room temperature. The response value of the PANI/N-GQD/hollow In2O3 nanofiber sensor with a loading of 20 wt% N-GQD-coated hollow In2O3 nanofiber and an exposure of 1 ppm NH3 was 15.2, which was approximately more than 4.4 times higher than that of the PANI sensor. This ternary composite sensor was proved to be very sensitive in the detection of NH3 at a range of concentration between 0.6 ppm and 2.0 ppm at room temperature, which is crucial in the detection of hepatic or kidney disease in human breath. The PANI/N-GQD/hollow In2O3 nanofiber sensor also revealed higher selectivity and repeatability when exposed to 1.0 and 2.0 ppm NH3 at room temperature. Because of the excellent selectivity and repeatability in the detection of 1.0 and 2.0 ppm NH3 at room temperature achieved in this study, it is considered that the PANI/N-GQD/hollow In2O3 nanofiber composite sensor will be a favored gas-sensing material applied on human breath for the detection of hepatic or kidney disease.

10.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209173

RESUMEN

In this research, the effects of Zn-Ti layered double hydroxide (Zn-Ti LDH) as a UV-protection additive, which was added to the poly(butylene succinate-co-adipate) (PBSA) matrix, were investigated. Stearic acid was used to increase the hydrophobicity of Zn-Ti LDH via ion-exchange method. Transmission electron microscopy images of PBSA composites showed that modified Zn-Ti LDH (m-LDH) well-dispersed in the polymer matrix. Due to the effect of heterogeneous nucleation, the crystallization temperature of the composite increased to 52.9 °C, and the accompanying crystallinity increased to 31.0% with the addition of 1 wt% m-LDH. The additional m-LDH into PBSA copolymer matrix significantly enhanced the storage modulus, as compared to pure PBSA. Gel permeation chromatography and Fourier transform infrared spectroscopy analysis confirmed that the addition of m-LDH can reduce the photodegradation of PBSA.

11.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445683

RESUMEN

Polylactide (PLA) is a biodegradable thermoplastic aliphatic polyester. The thermal stability and crystallization behavior of PLA are extremely sensitive to storage, processing, and usage conditions. This work systematically studied the thermal stability and crystallization behavior of poly(L-lactide) (PLLA), poly(D-lactide) (PDLA), and a PLLA/PDLA (LD) blend, which were stored under two sets of laboratory storage conditions: (1) stored in a vacuum-free desiccator and (2) stored in vacuum-sealed bags. Both were stored at room temperature for 3 years. Gel permeation chromatography results revealed that the PLLA, PDLA, and LD samples hydrolyzed slowly when stored in vacuum-sealed bags and degraded significantly when stored in a vacuum-free desiccator; this process significantly reduced the thermal stability of the samples stored in the vacuum-free desiccator. Owing to hydrolysis, the levorotation and dextrorotation (L- and D-) molecular chains were shortened; consequently, more nuclei were formed, and this caused the melting points of the PLLA, PDLA, and LD samples to decrease and the melting enthalpy of the crystals in these samples to increase. Wide-angle X-ray diffraction analysis revealed that when the L- and D- molecular chains were packed side by side to form stereocomplex crystals and the randomly arranged L- and D- molecular chains were easy hydrolyzed and degraded, this interfered with the formation of homocrystals in LD. When PLLA, PDLA, and LD samples are stored in a vacuum-free desiccator, they will be significantly hydrolyzed, resulting in the formation of only stereocomplex crystals, and no homocrystals are observed.

12.
Polymers (Basel) ; 13(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374344

RESUMEN

In this study, we improved the photovoltaic (PV) properties and storage stabilities of inverted perovskite solar cells (PVSCs) based on methylammonium lead iodide (MAPbI3) by employing bathocuproine (BCP)/poly(methyl methacrylate) (PMMA) and BCP/polyvinylpyrrolidone (PVP) as hole-blocking and electron-transporting interfacial layers. The architecture of the PVSCs was indium tin oxide/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/MAPbI3/[6,6]-phenyl-C61-butyric acid methyl ester/BCP based interfacial layer/Ag. The presence of PMMA and PVP affected the morphological stability of the BCP and MAPbI3 layers. The storage-stability of the BCP/PMMA-based PVSCs was enhanced significantly relative to that of the corresponding unmodified BCP-based PVSC. Moreover, the PV performance of the BCP/PVP-based PVSCs was enhanced when compared with that of the unmodified BCP-based PVSC. Thus, incorporating hydrophobic polymers into BCP-based hole-blocking/electron-transporting interfacial layers can improve the PV performance and storage stability of PVSCs.

13.
Polymers (Basel) ; 12(9)2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32872635

RESUMEN

The enhancement of the ultraviolet (UV) photodegradation resistance of biodegradable polymers can improve their application efficacy in a natural environment. In this study, the hexadecylamine modified layered zinc phenylphosphonate (m-PPZn) was used as a UV protection additive for poly(butylene adipate-co-terephthalate) (PBAT) via solution mixing. The results from the Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction analysis of the m-PPZn indicated the occurrence of hexadecylamine intercalation. FTIR and gel permeation chromatography were used to characterize the evolution of the PBAT/m-PPZn composites after being artificially irradiated via a light source. The various functional groups produced via photodegradation were analyzed to illustrate the enhanced UV protection ability of m-PPZn in the composite materials. From the appearance, the yellowness index of the PBAT/m-PPZn composite materials was significantly lower than that of the pure PBAT matrix due to photodegradation. These results were confirmed by the molecular weight reduction in PBAT with increasing m-PPZn content, possibly due to the UV photon energy reflection by the m-PPZn. This study presents a novel approach of improving the UV photodegradation of a biodegradable polymer using an organically modified layered zinc phenylphosphonate composite.

14.
Polymers (Basel) ; 12(9)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967201

RESUMEN

A new biodegradable aliphatic-aromatic poly (butylene carbonate-co-terephthalate) (PBCT-85) with the molar ratio [BC]/[BT] = 85/15, successfully synthesized through transesterification and polycondensation processes, was identified using 1H-NMR spectra. Various weight ratios of PBCT/organically modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were manufactured using the solution mixing process. Wide-angle X-ray diffraction and transmission electron microscopy were used to examine the morphology of PBCT-85/m-PPZn nanocomposites. Both results exhibited that the stacking layers of m-PPZn were intercalated into the PBCT-85 polymer matrix. The additional m-PPZn into PBCT-85 copolymer matrix significantly enhanced the storage modulus at -70 °C, as compared to that of neat PBCT-85. The lipase from Pseudomonas sp. was used to investigate the enzymatic degradation of PBCT-85/m-PPZn nanocomposites. The weight loss decreased as the loading of m-PPZn increased, indicating that the existence of m-PPZn inhibits the degradation of the PBCT-85 copolymers. This result might be attributed to the higher degree of contact angle for PBCT-85/m-PPZn nanocomposites. The PBCT-85/m-PPZn composites approved by MTT assay are appropriate for cell growth and might have potential in the application of biomedical materials.

15.
Materials (Basel) ; 13(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947565

RESUMEN

Biodegradable acrylic acid-grafted poly(butylene succinate-co-terephthalate) (g-PBST)/organically modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were effectively fabricated containing covalent bonds between the g-PBST and m-PPZn. The results of wide-angle X-ray diffraction and transmission electron microscopy revealed that the morphology of the g-PBST/m-PPZn nanocomposites contained a mixture of partially exfoliated or intercalated conformations. The isothermal crystallization behavior of the nanocomposites showed that the half-time for crystallization of 5 wt % g-PBST/m-PPZn nanocomposites was less than 1 wt % g-PBST/m-PPZn nanocomposites. This finding reveals that increasing the loading of m-PPZn can increase the crystallization rate of nanocomposites. Degradation tests of g-PBST/m-PPZn nanocomposites fabricated using the heat pressing and the freeze-drying process were performed by lipase from Pseudomonas sp. The degradation rates of g-PBST-50/m-PPZn nanocomposites were significantly lower than those of g-PBST-70/m-PPZn nanocomposites. The g-PBST-50 degraded more slowly due to the higher quantity of aromatic group and increased stiffness of the polymer backbone. The degradation rate of the freeze-drying specimens contained a more extremely porous conformation compared to those fabricated using the heat pressing process.

16.
Sci Rep ; 8(1): 911, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343786

RESUMEN

A hollow hemispherical polystyrene (HHPS) was fabricated to reduce total internal reflection in AlGaInP-based LEDs. At an injection current of 350 mA, the external quantum efficiencies of LED-I, LED-II, LED-III, and LED-IV are 20.92%, 24.65%, 27.28%, and 33.77% and the wall-plug efficiencies are 17.11%, 20%, 22.5%, and 27.33%, respectively. The enhanced performance is attributed to the light output power enhancement through the surface roughness, microlens-liked PS hemisphere, and scatter-liked HHPS array. In this paper, the rigorous coupled wave analysis (RCWA) numerical method was also conducted to demonstrate the HHPS array effectively enlarge the effective light cone.

17.
Biotechnol J ; 13(4): e1700560, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29337429

RESUMEN

Whole-cell degradation of polyesters not only avoids the tedious process of enzyme separation, but also allows the degraded product to be reused as a carbon source. In this study, Escherichia coli BL21(DE3) harboring phaZCma , a gene encoding poly(3-hydroxybutyrate) (PHB) depolymerase from Caldimonas manganoxidans, is constructed. The extra-cellular fraction of E. coli/pPHAZ exhibits a fast PHB degradation rate where it only took 35 h to completely degrade PHB films, while C. manganoxidans takes 81 h to do the same. The co-expression of ORFCma (a putative periplasmic substrate binding protein that is within the same operon of phaZCma ) further improves the PHB degradation. While 28 h is needed for E. coli/pPHAZ to cause an 80% weight loss in PHB films, E. coli/pORFPHAZ needs only 21 h. Furthermore, it is able to degrade at-least four different polyesters, PHB, poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(butylene succinate-co-adipate) (PBSA). Testing of the time course of 3-hydroxybutyrate concentration and the turbidity of the degradation solutions over time shows that PhaZCma has both exo- and endo-enzymatic activity. The whole-cell E. coli/pORFPHAZ can be used for recycling various polyesters while ORFCma can potentially be a universal element for enhancing the secretion of recombinant protein.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Comamonadaceae/enzimología , Escherichia coli/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Hidrolasas de Éster Carboxílico/metabolismo , Comamonadaceae/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibutiratos/química , Sistemas de Lectura Abierta , Poliésteres/química , Reciclaje , Factores de Tiempo
18.
Appl Biochem Biotechnol ; 180(5): 852-871, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27230570

RESUMEN

Recently, poly(3-hydroxybutyrate) (PHB) has been found in a few thermophilic strains where several advantages can be gained from running fermentation at high temperatures. Caldimonas manganoxidans, a thermophilic gram-negative bacterium, was investigated for the feasibility as a PHB-producing strain. It is suggested that the best fermentation strategy for achieving the highest PHB concentration of 5.4 ± 1.1 g/L (from 20 g/L glucose) in 24 h is to use the fermentation conditions that are favored for the bacterial growth, yet temperature and pH should be chosen at conditions that are favored for the PHB content. Besides, the above fermentation conditions produce PHB that has a high molecular weight of 1274 kDa with a low polydispersity index (PDI) of 1.45, where the highest Mw of PHB of 1399 kDa (PDI of 1.32) is obtained in this study. To the best knowledge of authors, C. manganoxidans has the best PHB productivity among the thermophiles and is comparable to those common PHB-producing mesophiles.


Asunto(s)
Comamonadaceae/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Temperatura , Biomasa , Carbono/farmacología , Comamonadaceae/efectos de los fármacos , Comamonadaceae/crecimiento & desarrollo , Estudios de Factibilidad , Glucosa/farmacología , Concentración de Iones de Hidrógeno , Peso Molecular , Nitrógeno/farmacología , Oxígeno/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
19.
Materials (Basel) ; 9(3)2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-28773284

RESUMEN

Stereocomplex-type poly(lactic acid) (SC-PLA)/oleylamine-modified layered zinc phenylphosphonate (SC-PLA/m-PPZn) nanocomposites are successfully fabricated using a solution mixing process. Wide-angle X-ray diffraction (WAXD) analysis reveals that the structural arrangement of the oleylamine-modified PPZn exhibits a large interlayer spacing of 30.3 Å. In addition, we investigate the temperature effect on the real-time structural arrangement of PPZn and m-PPZn. The results indicated that the lattice expansion of m-PPZn with increasing temperature leads to an increase in the interlayer spacing from 30.3 to 37.1 Å as the temperature increases from 30 to 150 °C. The interlayer spacing decreases slightly as the temperature further increases to 210 °C. This behavior might be attributed to interlayer oleylamine elimination, which results in hydrogen bonding destruction between the hydroxide sheets and water molecules. As the temperature reaches 240 °C, the in situ WAXD patterns show the coexistence of m-PPZn and PPZn. However, the layered structures of m-PPZn at 300 °C are almost the same as those of PPZn, after the complete degradation temperature of oleylamine. The morphology of the SC-PLA/m-PPZn nanocomposites characterized using WAXD and transmission electron microscopy (TEM) demonstrates that most partial delamination layered materials are randomly dispersed in the SC-PLA matrix. Small-angle X-ray scattering reveals that higher crystal layer thickness and lower surface free energy is achieved in 0.25 wt% SC-PLA/m-PPZn nanocomposites. These results indicate that the introduction of 0.25 wt% m-PPZn into SC-PLA reduces the surface free energy, thereby increasing the polymer chain mobility.

20.
Materials (Basel) ; 8(7): 4553-4564, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-28793456

RESUMEN

This work describes the thermal stability and magnetic properties of polyvinylidene fluoride (PVDF)/magnetite nanocomposites fabricated using the solution mixing technique. The image of transmission electron microscopy for PVDF/magnetite nanocomposites reveals that the 13 nm magnetite nanoparticles are well distributed in PVDF matrix. The electroactive ß-phase and piezoelectric responses of PVDF/magnetite nanocomposites are increased as the loading of magnetite nanoparticles increases. The piezoelectric responses of PVDF/magnetite films are extensively increased about five times in magnitude with applied strength of electrical field at 35 MV/m. The magnetic properties of PVDF/magnetite nanocomposites exhibit supermagnetism with saturation magnetization in the range of 1.6 × 10-3-3.1 × 10-3 emu/g, which increases as the amount of magnetite nanoparticles increases. The incorporation of 2 wt % magnetite nanoparticles into the PVDF matrix improves the thermal stability about 25 °C as compared to that of PVDF. The effect of magnetite particles on the isothermal degradation behavior of PVDF is also investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...