Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37896640

RESUMEN

PURPOSE: The objective of this systematic review and meta-analysis was to assess the validity of the Actigraph triaxial accelerometer device in measuring physical activity energy expenditure (PAEE) in healthy adults, with indirect calorimetry (IC) serving as the validity criterion. METHODS: A comprehensive search was conducted using the PubMed, Web of Science, and sportdiscuss databases, in addition to manual searches for supplementary sources. Search strategies were employed that involved conducting single keyword searches using the terms "gt3x" and "Actigraph gt3x". The literature search encompassed the timeframe spanning from 1 January 2010 to 1 March 2023. The methodological quality of the studies included in the analysis was evaluated using both the Downs and Black checklist and the Consensus-Based Criteria for Selection of Measurement Instruments (COSMIN) checklist. The meta-analysis was conducted using the Review Manager 5.4 software. The standardized mean difference (SMD) was calculated and expressed as a 95% confidence interval (CI). The significance level was set at α = 0.05. A systematic assessment of the Actigraph's performance was conducted through the descriptive analysis of computed effect sizes. RESULTS: A total of 4738 articles were retrieved from the initial search. After eliminating duplicate articles and excluding those deemed irrelevant, a comprehensive analysis was conducted on a total of 20 studies, encompassing a combined sample size of 1247 participants. The scores on the Downs and Black checklist ranged from 10 to 14, with a mean score of 11.35. The scores on the COSMIN checklist varied from 50% to 100%, with an average score of 65.83%. The meta-analysis findings revealed a small effect size (SMD = 0.01, 95% CI = 0.50-0.52, p = 0.97), indicating no statistically significant difference (p > 0.05). CONCLUSIONS: The meta-analysis revealed a small effect size when comparing the Actigraph and IC, suggesting that the Actigraph can be utilized for assessing total PAEE. Descriptive analyses have indicated that the Actigraph device has limited validity in accurately measuring energy expenditure during specific physical activities, such as high-intensity and low-intensity activities. Therefore, caution should be exercised when utilizing this device for such purposes. Furthermore, there was a significant correlation between the activity counts measured by the Actigraph and the PAEE, indicating that activity counts can be utilized as a predictive variable for PAEE.


Asunto(s)
Lista de Verificación , Metabolismo Energético , Humanos , Adulto , Calorimetría Indirecta , Programas Informáticos
2.
Hematology ; 28(1): 2224625, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37345979

RESUMEN

BACKGROUND: Clinical outcome of patients with chronic myeloid leukemia (CML) has improved dramatically since the introduction of tyrosine kinase inhibitors such as imatinib mesylate (IM). However, approximately 20-30% of patients experience IM resistance. SH-4-54, which targets the SH2 domains of both proteins STAT3 and STAT5, has been reported to exhibit anticancer activity in solid tumors. However, the roles of SH-4-54 in CML remain unclear. The aim was to explore whether SH-4-54 could overcome IM resistance and identify novel targets for CML. METHODS: Cell viability was measured by CCK-8 assays after treatment of K562 and K562R cells with different concentrations of SH-4-54. Annexin V-FITC and PI were applied to assess the effects of SH-4-54 on cell apoptosis. Effects of SH-4-54 on the expression of proteins downstream of BCR::ABL1 were assessed by western blotting (WB). Effects of SH-4-54 on gene expression profile of CML cells were analyzed by Next generation sequence (NGS). RESULTS: SH-4-54 inhibited the growth of CML cell lines with increasing concentration. SH-4-54 cytotoxic effects correlated with a significant induction of apoptosis. The results of WB analysis showed the downstream proteins of BCR::ABL1, such as STAT3 and STAT5, decreased after SH-4-54 treatment; moreover, the phosphorylation of both proteins were inhibited in dose-dependent manner. Using NGS, we obtained Mrna expression profiles in SH-4-54 treated K562 and K562R cells and identified differentially expressed mRNAs. Among these, STAT3 and STAT5 were markedly downregulated. CONCLUSION: SH-4-54 may overcome IM resistance and represent a promising novel approach to improve the outcome of CML.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Resistencia a Antineoplásicos/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Apoptosis , Células K562 , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
ACS Omega ; 8(12): 11220-11232, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008125

RESUMEN

The direct oxidation of low-concentration methane (CH4) to methanol (CH3OH) is often regarded as the "holy grail". However, it still is very difficult and challenging to oxidize methane to methanol in one step. In this work, we present a new approach to directly oxidize CH4 to generate CH3OH in one step by doping non-noble metal Ni sites on bismuth oxychloride (BiOCl) equipped with high oxygen vacancies. Thereinto, the conversion rate of CH3OH can reach 39.07 µmol/(gcat·h) under 420 °C and flow conditions on the basis of O2 and H2O. The crystal morphology structure, physicochemical properties, metal dispersion, and surface adsorption capacity of Ni-BiOCl were explored, and the positive effect on the oxygen vacancy of the catalyst was proved, thus improving the catalytic performance. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was also performed to study the surface adsorption and reaction process of methane to methanol in one step. Results demonstrate that the key to keep good activity lies in the oxygen vacancies of unsaturated Bi atoms, which can adsorb and active CH4 and to produce methyl groups and adsorbing hydroxyl groups in methane oxidation process. This study broadens the application of oxygen-deficient catalysts in the catalytic conversion of CH4 to CH3OH in one step, which provides a new perspective on the role of oxygen vacancies in improving the catalytic performance of methane oxidation.

4.
Front Bioeng Biotechnol ; 11: 1062769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890909

RESUMEN

Proteins, as gifts from nature, provide structure, sequence, and function templates for designing biomaterials. As first reported here, one group of proteins called reflectins and derived peptides were found to present distinct intracellular distribution preferences. Taking their conserved motifs and flexible linkers as Lego bricks, a series of reflectin-derivates were designed and expressed in cells. The selective intracellular localization property leaned on an RMs (canonical conserved reflectin motifs)-replication-determined manner, suggesting that these linkers and motifs were constructional fragments and ready-to-use building blocks for synthetic design and construction. A precise spatiotemporal application demo was constructed in the work by integrating RLNto2 (as one representative of a synthetic peptide derived from RfA1) into the Tet-on system to effectively transport cargo peptides into nuclei at selective time points. Further, the intracellular localization of RfA1 derivatives was spatiotemporally controllable with a CRY2/CIB1 system. At last, the functional homogeneities of either motifs or linkers were verified, which made them standardized building blocks for synthetic biology. In summary, the work provides a modularized, orthotropic, and well-characterized synthetic-peptide warehouse for precisely regulating the nucleocytoplasmic localization of proteins.

5.
RSC Adv ; 13(8): 5393-5404, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36793293

RESUMEN

Upgrading methane into methanol or other high value-added chemicals is not only beneficial to mitigate the greenhouse effect, but also provides basic raw materials for industrial production. Nowadays, most research is limited to zeolite systems, and it is a considerable challenge to extend the support to metal oxides while achieving a high yield of methanol. In this paper, we take advantage of impregnation methods to synthesise a novel Cu/MoO3 catalyst, which can convert methane to methanol in the gaseous phase. At 600 °C, the Cu(2)/MoO3 catalyst can achieve a maximum STYCH3OH of 47.2 µmol (g-1 h-1) with a molar ratio CH4 : O2 : H2O = 5 : 1.4 : 10. Consequences of SEM, TEM, HRTEM and XRD substantiate that Cu is incorporated into the lattice of MoO3 to form CuMoO4. And transmission infrared spectroscopy, Raman spectroscopy together with XPS characterization techniques confirm the generation of CuMoO4, which is the main active site provider. This work provides a new support platform for Cu-based catalyst research in the methane-to-methanol system.

6.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36555320

RESUMEN

Some cephalopods (squids, octopuses, and cuttlefishes) produce dynamic structural colors, for camouflage or communication. The key to this remarkable capability is one group of specialized cells called iridocytes, which contain aligned membrane-enclosed platelets of high-reflective reflectins and work as intracellular Bragg reflectors. These reflectins have unusual amino acid compositions and sequential properties, which endows them with functional characteristics: an extremely high reflective index among natural proteins and the ability to answer various environmental stimuli. Based on their unique material composition and responsive self-organization properties, the material community has developed an impressive array of reflectin- or iridocyte-inspired optical systems with distinct tunable reflectance according to a series of internal and external factors. More recently, scientists have made creative attempts to engineer mammalian cells to explore the function potentials of reflectin proteins as well as their working mechanism in the cellular environment. Progress in wide scientific areas (biophysics, genomics, gene editing, etc.) brings in new opportunities to better understand reflectins and new approaches to fully utilize them. The work introduced the composition features, biochemical properties, the latest developments, future considerations of reflectins, and their inspiration applications to give newcomers a comprehensive understanding and mutually exchanged knowledge from different communities (e.g., biology and material).


Asunto(s)
Decapodiformes , Proteínas , Animales , Proteínas/química , Decapodiformes/química , Aminoácidos , Mamíferos/metabolismo
7.
Front Cell Dev Biol ; 10: 862011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813206

RESUMEN

Reflectin proteins are natural copolymers consisting of repeated canonical domains. They are located in a biophotonic system called Bragg lamellae and manipulate the dynamic structural coloration of iridocytes. Their biological functions are intriguing, but the underlying mechanism is not fully understood. Reflectin A1, A2, B1, and C were found to present distinguished cyto-/nucleoplasmic localization preferences in the work. Comparable intracellular localization was reproduced by truncated reflectin variants, suggesting a conceivable evolutionary order among reflectin proteins. The size-dependent access of reflectin variants into the nucleus demonstrated a potential model of how reflectins get into Bragg lamellae. Moreover, RfA1 was found to extensively interact with the cytoskeleton, including its binding to actin and enrichment at the microtubule organizing center. This implied that the cytoskeleton system plays a fundamental role during the organization and transportation of reflectin proteins. The findings presented here provide evidence to get an in-depth insight into the evolutionary processes and working mechanisms of reflectins, as well as novel molecular tools to achieve tunable intracellular transportation.

8.
Front Bioeng Biotechnol ; 10: 870445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573228

RESUMEN

Wet adhesion technology has potential applications in various fields, especially in the biomedical field, yet it has not been completely mastered by humans. Many aquatic organisms (e.g., mussels, sandcastle worms, and barnacles) have evolved into wet adhesion specialists with excellent underwater adhesion abilities, and mimicking their adhesion principles to engineer artificial adhesive materials offers an important avenue to address the wet adhesion issue. The crustacean barnacle secretes a proteinaceous adhesive called barnacle cement, with which they firmly attach their bodies to almost any substrate underwater. Owing to the unique chemical composition, structural property, and adhesion mechanism, barnacle cement has attracted widespread research interest as a novel model for designing biomimetic adhesive materials, with significant progress being made. To further boost the development of barnacle cement-inspired adhesive materials (BCIAMs), it is necessary to systematically summarize their design strategies and research advances. However, no relevant reviews have been published yet. In this context, we presented a systematic review for the first time. First, we introduced the underwater adhesion principles of natural barnacle cement, which lay the basis for the design of BCIAMs. Subsequently, we classified the BCIAMs into three major categories according to the different design strategies and summarized their research advances in great detail. Finally, we discussed the research challenge and future trends of this field. We believe that this review can not only improve our understanding of the molecular mechanism of barnacle underwater adhesion but also accelerate the development of barnacle-inspired wet adhesion technology.

9.
J Hazard Mater ; 436: 129129, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35584584

RESUMEN

Superhydrophilic/underwater superoleophobic coatings that effectively prevent viscous oil contamination have been of considerable interest for the great potential in oil spill remediation and oilfield wastewater treatment. In the present work, a protonated cross-linkable nanocomposite coating with robust underwater superoleophobicity and intensified hydration capability is proposed through the synthesis of active polymeric nanocomplex (PNC), cross-linking reaction between PNC and hydrophilic chitosan (CS), and final protonation to further improve water affinity. Benefiting from the hierarchical structure and strong hydration capability induced by electrostatic interactions and hydrogen bondings, the nanocomposite coating coated textile exhibits excellent superhydrophilicity (within 0.28 s with water contact angle reaching 0°), underwater superoleophobicity (underwater crude oil contact angle at 160°), and ultralow oil adhesion even to highly viscous silicone oil. Moreover, the nanocomposite coating presents a robust chemical resistance, mechanical tolerance, and storage stability. Simultaneously, the nanocomposite coating adapts well to various porous substrates (e.g., stainless steel mesh and Ni sponge) with great anti-oil-fouling and self-cleaning performances. Importantly, the coating coated textile is successfully applied in crude oil/water separation with excellent efficiency and repeatability. The findings conceivably stand out as a new methodology to fabricate superhydrophilic/underwater superoleophobic materials with outstanding anti-viscous oil-fouling property for practically treating oily wastewater.

10.
ACS Omega ; 7(10): 8536-8546, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35309416

RESUMEN

Nickel hydroxide nanosheets were prepared by a very simple direct manual grinding strategy and then calcined at 200, 300, 400, and 500°. The synthesized samples were tested in lean methane (1.0% CH4, air balanced) catalytic combustion and subjected to a series of physical and chemical characterizations. The sample calcined at 200 °C (Ni(OH)2-200) presented a typical nanosheet structure and the best methane catalytic activity in all the samples, which can completely catalyze methane at 400 °C. The crystal structure changed from ß-Ni(OH)2 to NiO at a calcination temperature of 300 °C. The ß-Ni(OH)2 nanosheets began to partially agglomerate into nanoparticles at 400 °C and almost transformed into nanoparticles at 500 °C. Interestingly, the original nanosheet samples Ni(OH)2-200 and NiO-300 still maintained their morphology and structure although they all went through an activity test at 500 °C in a 1.0% CH4 atmosphere, which proves that the calcination of nanosheets in a CH4 atmosphere tended to maintain their nanosheet morphology compared with calcination in the air. Furthermore, through the activity test, X-ray photoelectron spectroscopy results, TPx, and in situ DRIFTS characterization, it was proved that the hydroxyl groups on the Ni(OH)2-200 and NiO nanosheets were beneficial to the dissociation of methane on the catalyst surface, and the nanosheet structure was also prone to generating more active adsorbed oxygen, so the activation energy of methane was lowered. A methane catalytic mechanism on the Ni(OH)2 nanosheets and NiO nanoparticles was proposed, which further proved the key role of hydroxyl groups in methane combustion.

11.
Oxid Med Cell Longev ; 2022: 5469220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35087615

RESUMEN

Intervertebral disc degeneration (IDD) is a chronic disease affecting millions of patients; however, its specific etiology is unknown. G protein-coupled receptors (GPRs) are a superfamily of integral membrane receptors in cells, and the receptors respond to a diverse range of stimuli and participate in multiple cellular activities. Here, using RNA-sequencing (RNA-seq) methods and immunohistochemistry, we revealed that G protein-coupled receptor 35 (GPR35) may have a relationship with IDD. Then, we demonstrated that the deletion of GPR35 in nucleus pulposus cells (NPCs) with siRNA or in Gpr35-/- mice significantly alleviated IDD caused by senescence or mechanical stress, further validating the pathological role of GPR35 in IDD. In addition, GPR35 induced the influx of Ca2+ and upregulation of reactive oxygen species (ROS) under mechanical stress in NPCs, which we believe to be the mechanism of GPR35-induced IDD. Finally, GPR35 caused upregulation of ROS in NPCs under mechanical stress, while excessive ROS stimulated the NPCs to express more GPR35 with a significant dose or time response. The u-regulated GPR35 could sense mechanical stress to produce more ROS and perpetuate this harmful cycle. In summary, our study shows that GPR35 plays a critical role in mediating IDD via mediating the influx of calcium ions and upregulating ROS, which implies a strong potential advantage of GPR35 as a prevention and treatment target in IDD.


Asunto(s)
Calcio/metabolismo , Degeneración del Disco Intervertebral/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Masculino , Ratones
12.
Mol Cell Biochem ; 477(2): 431-444, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34783963

RESUMEN

Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/terapia , Administración Intravenosa , Aloinjertos , Animales , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Ratas , Ratas Endogámicas F344
13.
J Mater Sci Mater Med ; 32(9): 120, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34495414

RESUMEN

Polyetheretherketone (PEEK) is an important material applied in orthopedic applications, as it posses favorable properties for orthopedic implants, e.g., radiolucency and suitable elastic modulus. However, PEEK exhibits insufficient osteogenesis and osteointegration that limits its clinical applications. In this study, we aimed to enhance the osteogenisis of PEEK by using a surface coating approach. Nanocomposite coating composed of albumin/lithium containing bioactive glass nanospheres was fabricated on PEEK through dip-coating method. The presence of nanocomposite coating on PEEK was confirmed by SEM, FTIR, and XRD techniques. Nanocomposite coatings significantly enhanced hydrophilicity and roughness of PEEK. The nanocomposite coatings also enhanced adhesion, proliferation, and osteogenic differentiation of bone mesenchymal stem cells due to the presence of bioactive glass nanospheres and the BSA substrate film. The results indicate the great potential of the nanocomposite coating in enhancing osteogenesis and osteointegration of PEEK implants.


Asunto(s)
Albúminas/farmacología , Benzofenonas/farmacología , Cerámica/farmacología , Litio/farmacología , Osteogénesis/efectos de los fármacos , Polímeros/farmacología , Albúminas/química , Animales , Benzofenonas/síntesis química , Benzofenonas/química , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cerámica/química , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Sinergismo Farmacológico , Litio/química , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanocompuestos/química , Nanosferas/química , Oseointegración/efectos de los fármacos , Polímeros/síntesis química , Polímeros/química , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie
14.
Int J Cardiol ; 340: 68-78, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34400167

RESUMEN

The purpose of this study was to assess whether short-term, mild exercise induces protection against myocardial infarction and, if so, what role the eNOS-PKCε-iNOS axis plays. Mice were subjected to 2 bouts/day of treadmill exercise (60 min at 15 m/min) for 2 consecutive days. At 24 h after the last bout of exercise, mice were subjected to a 30-min coronary artery occlusion and 24 h of reperfusion. In the exercise group (group III, wild-type mice), infarct size (25.5 ± 8.8% of risk region) was significantly (P < 0.05) reduced compared with the control groups (sham exercise, group II [63.4 ± 7.8%] and acute myocardial infarction, group I [58.6 ± 7.0%]). This effect was abolished by pretreatment with the NOS inhibitor L-NA (group VI, 56.1 ± 16.2%) and the PKC inhibitor chelerythrine (group VIII, 57.9 ± 12.5%). Moreover, the late PC effect of exercise was completely abrogated in eNOS-/- mice (group XIII, 61.0 ± 11.2%). The myocardial phosphorylated eNOS at Ser-1177 was significantly increased at 30 min after treadmill training (exercise group) compared with sham-exercised hearts. PKCε translocation was significantly increased at 30 min after exercise in WT mice but not in eNOS-/- mice. At 24 h after exercise, iNOS protein was upregulated compared with sham-exercised hearts. The protection of late PC was abrogated in iNOS-/- mice (group XVI, 56.4 ± 12.9%) and in wildtype mice given the selective iNOS inhibitor 1400 W prior to ischemia (group X 62.0 ± 8.8% of risk region). We conclude that 1) even short, mild exercise induces a delayed PC effect that affords powerful protection against infarction; 2) this cardioprotective effect is dependent on activation of eNOS, eNOS-derived NO generation, and subsequent PKCε activation during PC; 3) the translocation of PKCε is dependent on eNOS; 4) the protection 24 h later is dependent on iNOS activity. Thus, eNOS is the trigger and iNOS the mediator of PC induced by mild exercise.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio , Animales , Ratones , Infarto del Miocardio/prevención & control , Miocardio , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico Sintasa de Tipo III , Proteína Quinasa C-epsilon
15.
Oxid Med Cell Longev ; 2021: 6681815, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093962

RESUMEN

Reactive oxygen species (ROS) are thought to have a strong correlation with a number of intervertebral disc (IVD) diseases. Here, we aimed to determine whether ROS represent an etiology of low back pain (LBP) during IVD degeneration. Thirty degenerated intervertebral disc samples were obtained from patients, and ROS levels were quantified using dihydroethidium (DHE) staining. The results suggested a significant correlation between the ROS level and the severity of LBP. Subsequently, a puncture-induced LBP model was established in rats, and ROS levels significantly increased compared with those in the sham surgery group, accompanied with severe puncture-induced IVD degeneration. In addition, when ROS levels were increased by H2O2 administration or decreased by NAC treatment, the rats showed increased or decreased LBP, respectively. Based on this evidence, we further determined that stimulation with H2O2 in nucleus pulposus cells (NPCs) in vivo or in vitro resulted in upregulation of substance P (SP), a peptide thought to be involved in the synaptic transmission of pain, and that the severity of LBP decreased when SP levels were increased by exogenous SP administration or neutralized via aprepitant treatment in the IVDs of rats. In conclusion, ROS are primary inducers of LBP based on clinical and animal data, and the mechanism involves ROS stimulation of NPCs to secrete SP, which is a critical neurotransmitter peptide, to promote LBP in IVDs. Therefore, reducing the level of ROS with specific drugs and inhibiting SP may be alternative methods to treat LBP in the clinic.


Asunto(s)
Degeneración del Disco Intervertebral/terapia , Dolor de la Región Lumbar/terapia , Especies Reactivas de Oxígeno/metabolismo , Sustancia P/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Humanos , Masculino , Persona de Mediana Edad , Ratas , Regulación hacia Arriba
16.
Langmuir ; 37(14): 4129-4136, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33797242

RESUMEN

Finger-like radial hierarchical micropillars with folded tips are observed on the surface of the rose pistil stigma (RPS). Impressively, a water droplet on the surface of the RPS presents a spherical shape and it still hangs on the surface even when the RPS is turned over. Superhydrophobicity and high adhesion to water are demonstrated on the RPS, which is beneficial for the RPS to remain clean and fresh. The special wetting behavior of the RPS is highly related to its hierarchical microstructures and surface chemistry. Finger-like hierarchical micropillars with a high aspect ratio are capable of retaining air to support superhydrophobicity while the microgap between the micropillars and on the hydrophilic tips enables the RPS to retain a high adhesion to water. These findings about the unique wetting behaviors of the RPS may provide inspiration for the design and fabrication of functional wetting surfaces for diverse applications such as microdroplet manipulation, three-dimensional cell culture, and microfluidics.

17.
PLoS One ; 16(2): e0246818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33561150

RESUMEN

In recent years, Sporosarcina pasteurii (S. pasteurii) has become one of the most popular bacteria in microbially induced calcium carbonate precipitation (MICP). Various applications have been developed based on the efficient urease that can induce the precipitation of calcium carbonate. However, the metabolic mechanism related to biomineralization of S. pasteurii has not been clearly elucidated. The process of bacterial culture and biomineralization consumes a large amount of urea or ammonium salts, which are usually used as agricultural fertilizers, not to mention probable environmental pollutions caused by the excessive use of these raw materials. Therefore, it is urgent to reveal the mechanism of nitrogen utilization and metabolism of S. pasteurii. In this paper, we compared the growth and gene expression of S. pasteurii under three different culture conditions through transcriptome analyses. GO and KEGG analyses revealed that both ammonium and urea were direct nitrogen sources of S. pasteurii, and the bacteria could not grow normally in the absence of ammonium or urea. To the best of our knowledge, this paper is the first one to reveal the nitrogen utilization mechanism of S. pasteurii through transcriptome methods. Furthermore, the presence of ammonium might promote the synthesis of intracellular ATP and enhance the motility of the bacteria. There should be an ATP synthesis mechanism associated with urea hydrolysis catalyzed by urease in S. pasteurii.


Asunto(s)
Perfilación de la Expresión Génica , Nitrógeno/farmacología , Sporosarcina/genética , Sporosarcina/metabolismo , Adenosina Trifosfato/biosíntesis , Compuestos de Amonio/farmacología , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Pared Celular/efectos de los fármacos , Pared Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Flagelos/efectos de los fármacos , Flagelos/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Genes Bacterianos , Sporosarcina/efectos de los fármacos , Sporosarcina/crecimiento & desarrollo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Urea/farmacología , Ureasa/genética , Ureasa/metabolismo
18.
Small ; 17(9): e1902085, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31290615

RESUMEN

2D MXene-based nanomaterials have attracted tremendous attention because of their unique physical/chemical properties and wide range of applications in energy storage, catalysis, electronics, optoelectronics, and photonics. However, MXenes and their derivatives have many inherent limitations in terms of energy storage applications. In order to further improve their performance for practical application, the nanoengineering of these 2D materials is extensively investigated. In this Review, the latest research and progress on 2D MXene-based nanostructures is introduced and discussed, focusing on their preparation methods, properties, and applications for energy storage such as lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, and supercapacitors. Finally, the critical challenges and perspectives required to be addressed for the future development of these 2D MXene-based materials for energy storage applications are presented.

19.
Cardiovasc Drugs Ther ; 35(1): 113-123, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33079319

RESUMEN

PURPOSE: Plasma membranes constitute a gathering point for lipids and signaling proteins. Lipids are known to regulate the location and activity of signaling proteins under physiological and pathophysiological conditions. Membrane lipid therapies (MLTs) that gradually modify lipid content of plasma membranes have been developed to treat chronic disease; however, no MLTs have been developed to treat acute conditions such as reperfusion injury following myocardial infarction (MI) and percutaneous coronary intervention (PCI). A fusogenic nanoliposome (FNL) that rapidly incorporates exogenous unsaturated lipids into endothelial cell (EC) membranes was developed to attenuate reperfusion-induced protein signaling. We hypothesized that administration of intracoronary (IC) FNL-MLT interferes with EC membrane protein signaling, leading to reduced microvascular dysfunction and infarct size (IS). METHODS: Using a myocardial ischemia/reperfusion swine model, the efficacy of FNL-MLT in reducing IS following a 60-min coronary artery occlusion was tested. Animals were randomized to receive IC Ringer's lactate solution with or without 10 mg/mL/min of FNLs for 10 min prior to reperfusion (n = 6 per group). RESULTS: The IC FNL-MLT reduced IS (25.45 ± 16.4% vs. 49.7 ± 14.1%, P < 0.02) and enhanced regional myocardial blood flow (RMBF) in the ischemic zone at 15 min of reperfusion (2.13 ± 1.48 mL/min/g vs. 0.70 ± 0.43 mL/min/g, P < 0.001). The total cumulative plasma levels of the cardiac injury biomarker cardiac troponin I (cTnI) were trending downward but were not significant (999.3 ± 38.7 ng/mL vs. 1456.5 ± 64.8 ng/mL, P = 0.1867). However, plasma levels of heart-specific fatty acid binding protein (hFABP), another injury biomarker, were reduced at 2 h of reperfusion (70.3 ± 38.0 ng/mL vs. 137.3 ± 58.2 ng/mL, P = 0.0115).  CONCLUSION: The IC FNL-MLT reduced IS compared to vehicle in this swine model. The FNL-MLT maybe a promising adjuvant to PCI in the treatment of acute MI.


Asunto(s)
Lípidos de la Membrana/administración & dosificación , Lípidos de la Membrana/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Nanopartículas/química , Animales , Modelos Animales de Enfermedad , Portadores de Fármacos , Células Endoteliales/citología , Femenino , Liposomas/química , Ratones , Transducción de Señal , Porcinos
20.
Environ Sci Pollut Res Int ; 27(32): 40857-40869, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32677010

RESUMEN

It is well-known that the degradation of pollutants in real water environment is not only challenging but also has practical value. This paper focuses on the photocatalytic degradation of thidiazuron (TDZ), a popular defoliant, using Ag/AgCl-AC (Ag@AC 2:1); AC stands for activated carbon) in a matrix of Yangtze River water under sunlight irradiation. The prepared composite catalyst exhibits excellent performance in TDZ degradation under near neutral condition, the degradation rate reaches 94% in 200 min under solar irradiation. The common inorganic anions (SO42-, Cl-, and HCO3-) and cations (Ca2+, Cu2+, and Mg2+) show inhibitory effect of different degrees on TDZ degradation. Humic substances such as humic acid and fulvic acid also have an effect on the photocatalytic degradation of TDZ. With the increase of humic acid concentration, there is enhancement of inhibitory effect. As for fulvic acid, its effect is complex due to competitive adsorption and photoinduction action. The degradation products as identified by UHPLC-MS are mainly CO2, SO2, and H2O, indicating that the degradation was thorough. The reusability test of four runs reveals that the performance of the photocatalytic system is stable. The results demonstrate that sunlight can be well utilized for the photocatalytic degradation of TDZ. The study offers a cheap and effective approach for the photocatalytic degradation of organic pollutants in circumneutral water bodies.


Asunto(s)
Luz Solar , Contaminantes Químicos del Agua , Catálisis , Compuestos de Fenilurea , Fotólisis , Ríos , Plata , Tiadiazoles , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...