Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 360: 121010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749135

RESUMEN

Numerous unique flora and fauna inhabit the Lower Florida Keys, including the endangered Florida Key deer, found nowhere else. In this vulnerable habitat of flat islands with low elevation, accelerated sea level rise poses a threat. Predicting the impact of sea level rise on vegetation and wildlife is crucial. This study used 5 Intergovernmental Panel on Climate Change (IPCC) sea level rise scenarios to assess their effects on No Name Key, Florida. The goal was to estimate changes in the Florida Key deer population relative to sea level rise using a lidar-derived elevation data and a vegetation map. The method used 2 cases to model the sea level rise impact. In Case 1, total non-submerged area at current sea level was determined. Using 5 IPCC scenarios, a new total non-submerged land area was estimated, and deer numbers were predicted for each scenario. In Case 2, upward migration of coastal vegetation combined with the coastal squeeze process was modeled. A distinct elevation range for each vegetation type at the current sea level was determined. Vegetation ranges were redistributed based on respective elevation ranges in the sea level rise scenarios. Areas for each vegetation type were recalculated, and Key deer numbers were estimated for each sea level rise scenario. Results under the worst emission scenario showed the following: (1) for case 1, the land area was reduced to 30 % of the current land area, corresponding to having about 27 deer, and (2) for case 2, the land area was reduced to 70 % of the current land area, having about 54 deer on No Name Key. The results indicated reduced non-submerged land area and less upland vegetation, particularly hardwoods/hammocks, by the year 2100. As less land area is available, a decline in Key deer population is expected as sea levels rise. Since Key deer favor upland vegetation, habitat affected by sea level rise will likely support a smaller deer population. The findings emphasize the need for precise, timely predictions of sea level rise impacts and long-term conservation strategies. Specifically designed measures are required to protect and maintain endangered wildlife, such as the Florida Key deer, residing on these vulnerable islands.


Asunto(s)
Ecosistema , Modelos Teóricos , Elevación del Nivel del Mar , Elevación del Nivel del Mar/estadística & datos numéricos , Florida , Dinámica Poblacional/estadística & datos numéricos , Distribución Animal , Simulación por Computador , Dispersión de las Plantas
2.
Sci Total Environ ; 845: 157214, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35810897

RESUMEN

Large wildfires have increased in western US rangelands over the last three decades. There is limited information on the impacts of wildfires with different severities on the vegetation in these rangelands. This study assessed the impacts of large wildfires on rangeland fractional cover including annual forbs and grasses (AFG), perennial forbs and grasses (PFG), shrubs (SHR) and trees (TREE) across the western US, and explored relationships between changes in fractional cover and prefire soil moisture conditions. The Expectation Maximization (EM) algorithm was used to group wildfires into nine clusters based on the prefire rangeland fractional cover extracted from the Rangeland Analysis Platform. The Standardized Precipitation Evapotranspiration Index (SPEI) with various lag scales from the Gridded Surface Meteorological (GRIDMET) dataset was used to represent antecedent soil moisture conditions. The results showed generally that fractional cover decreased most for AFG and PFG during the fire year, one year postfire for SHR, and two years postfire for TREE. High severity wildfires led to the greatest decrease in cover for all plant functional types, while low severity wildfires caused the least decrease in the functional type cover in most cases, though some variations existed. Furthermore, the impacts of wildfires on vegetation cover were greater in woody (SHR and TREE) types than in herbaceous (AFG and PFG) types. Significant negative correlation existed between percent changes in AFG and PFG cover and SPEI indicating higher prefire soil moisture conditions likely increased fine fuel loads and led to a larger decrease in AFG and PFG cover following wildfires. Significant positive correlation existed between percent changes in SHR and TREE cover and SPEI indicating drier prefire conditions resulted in larger decreases in SHR and TREE cover following wildfires. These findings help better understand the impacts of wildfires on rangelands and provide insights for rangeland management.


Asunto(s)
Quemaduras , Incendios , Incendios Forestales , Ecosistema , Bosques , Humanos , Suelo , Estados Unidos
3.
Oecologia ; 186(4): 1127-1135, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29411110

RESUMEN

In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.


Asunto(s)
Ecosistema , Pradera , Suelo , Árboles , Madera
4.
Glob Chang Biol ; 24(5): 1992-2007, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29323781

RESUMEN

Soil carbon, nitrogen, and phosphorus cycles are strongly interlinked and controlled through biological processes, and the phosphorus cycle is further controlled through geochemical processes. In dryland ecosystems, woody encroachment often modifies soil carbon, nitrogen, and phosphorus stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) concentrations following woody encroachment by taking spatially explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by Prosopis glandulosa (an N2 fixer) and other woody species during the past century in southern Texas, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns throughout the soil profile following woody encroachment, while TP increased slower than SOC and TN in topmost surface soils (0-5 cm) but faster in subsurface soils (15-120 cm). Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in subsurface soils. The encroachment of woody species dominated by N2 -fixing trees into this P-limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the soil profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic mechanisms controlling C and N vs. P accumulation following vegetation change may vary with depth. Our findings suggest that efforts to incorporate effects of land cover changes into coupled climate-biogeochemical models should attempt to represent C-N-P imbalances that may arise following vegetation change.


Asunto(s)
Carbono/química , Nitrógeno/química , Fósforo/química , Prosopis/fisiología , Suelo/química , Clima , Ecosistema , Texas , Árboles/fisiología
5.
Ecology ; 99(1): 136-147, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29030983

RESUMEN

The geographically extensive phenomenon of woody plant encroachment into grass-dominated ecosystems has strong potential to influence biogeochemical cycles at ecosystem to global scales. Previous research has focused almost exclusively on quantifying pool sizes and flux rates of soil carbon and nitrogen (N), while few studies have examined the impact of woody encroachment on soil phosphorus (P) cycling. Moreover, little is known regarding the impact of woody encroachment on the depth distribution of soil total P at the landscape scale. We quantified patterns of spatial heterogeneity in soil total P along a soil profile by taking spatially explicit soil cores to a depth of 120 cm across a subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2 -fixer) and other tree/shrub species during the past century. Soil total P increased significantly following woody encroachment throughout the entire 120-cm soil profile. Large groves (>100 m2 ) and small discrete clusters (<100 m2 ) accumulated 53 and 10 g P/m2 more soil P, respectively, compared to grasslands. This P accumulation in soils beneath woody patches is most likely attributable to P uplift by roots located deep in the soil profile (>120 cm) and transfer to upper portions of the profile via litterfall and root turnover. Woody encroachment also altered patterns of spatial heterogeneity in soil total P in the horizontal plane, with highest values at the centers of woody patches, decreasing toward the edges, and reaching lowest values in the surrounding grassland matrix. These spatial patterns were evident throughout the upper 1.2 m of the soil profile, albeit at reduced magnitude deeper in the soil profile. Spatial generalized least squares models indicated that fine root biomass explained a significant proportion of the variation in soil total P both across the landscape and throughout the profile. Our findings suggest that transfer of P from deeper soil layers enlarges the P pool in upper soil layers where it is more actively cycled may be a potential strategy for encroaching woody species to satisfy their P demands.


Asunto(s)
Fósforo , Suelo , Ecosistema , Árboles , Madera
6.
Oecologia ; 159(3): 493-503, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19085012

RESUMEN

Variation in the stable N isotope ratio (delta15N) of plants and soils often reflects the influence of environment on the N cycle. We measured leaf delta15N and N concentration ([N]) on all individuals of Prosopis glandulosa (deciduous tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) present within a belt transect 308 m long x 12 m wide in a subtropical savanna ecosystem in southern Texas, USA in April and August 2005. Soil texture, gravimetric water content (GWC), total N and delta15N were also measured along the transect. At the landscape scale, leaf delta15N was negatively related to elevation for all the three species along this topoedaphic sequence. Changes in soil delta15N, total N, and GWC appeared to contribute to this spatial pattern of leaf delta15N. In lower portions of the landscape, greater soil N availability and GWC are associated with relatively high rates of both N mineralization and nitrification. Both soil delta15N and leaf [N] were positively correlated with leaf delta15N of non-N2 fixing plants. Leaf delta15N of P. glandulosa, an N2-fixing legume, did not correlate with leaf [N]; the delta15N of P. glandulosa's leaves were closer to atmospheric N2 and significantly lower than those of C. hookeri and Z. fagara. Additionally, at smaller spatial scales, a proximity index (which reflected the density and distance of surrounding P. glandulosa trees) was negatively correlated with leaf delta15N of C. hookeri and Z. fagara, indicating the N2-fixing P. glandulosa may be important to the N nutrition of nearby non-N2-fixing species. Our results indicate plant 15N natural abundance can reflect the extent of N retention and help us better understand N dynamics and plant-soil interactions at ecosystem and landscape scales.


Asunto(s)
Isótopos de Nitrógeno/metabolismo , Plantas/metabolismo , Clima Tropical , Lluvia , Estaciones del Año , Suelo/análisis , Especificidad de la Especie , Temperatura
7.
Oecologia ; 156(3): 479-89, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18327619

RESUMEN

delta(13)C values of C(3) plants are indicators of plant carbon-water relations that integrate plant responses to environmental conditions. However, few studies have quantified spatial variation in plant delta(13)C at the landscape scale. We determined variation in leaf delta(13)C, leaf nitrogen per leaf area (N(area)), and specific leaf area (SLA) in April and August 2005 for all individuals of three common woody species within a 308 x 12-m belt transect spanning an upland-lowland topoedaphic gradient in a subtropical savanna in southern Texas. Clay content, available soil moisture, and soil total N were all negatively correlated with elevation. The delta(13)C values of Prosopis glandulosa (deciduous N(2)-fixing tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) leaves increased 1-4 per thousand with decreasing elevation, with the delta(13)C value of P. glandulosa leaves being 1-3 per thousand higher than those of the two shrub species. Contrary to theory and results from previous studies, delta(13)C values were highest where soil water was most available, suggesting that some other variable was overriding or interacting with water availability. Leaf N(area) was positively correlated with leaf delta(13)C of all species (p < 0.01) and appeared to exert the strongest control over delta(13)C along this topoedaphic gradient. Since leaf N(area) is positively related to photosynthetic capacity, plants with high leaf N(area) are likely to have low p (I)/p (a) ratios and therefore higher delta(13)C values, assuming stomatal conductance is constant. Specific leaf area was not correlated significantly with leaf delta(13)C. Following a progressive growing season drought in July/August, leaf delta(13)C decreased. The lower delta(13)C in August may reflect the accumulation of (13)C-depleted epicuticular leaf wax. We suggest control of leaf delta(13)C along this topoedaphic gradient is mediated by leaf N(area) rather than by stomatal conductance limitations associated with water availability.


Asunto(s)
Carbono/metabolismo , Ecosistema , Magnoliopsida/metabolismo , Isótopos de Carbono , Geografía , Hojas de la Planta/química , Hojas de la Planta/fisiología , Lluvia , Estaciones del Año , Suelo/análisis , Especificidad de la Especie , Temperatura , Agua/análisis
8.
Environ Manage ; 40(2): 231-44, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17602260

RESUMEN

Fragmentation of family-owned farms and ranches has been identified as the greatest single threat to wildlife habitat, water supply, and the long-term viability of agriculture in Texas. However, an integrative framework for insights into the pathways of land use change has been lacking. The specific objectives of the study are to test the hypotheses that the nonagricultural value (NAV) of rural land is a reliable indicator of trends in land fragmentation and that NAV in Texas is spatially correlated with population density, and to explore the idea that recent changes in property size patterns are better represented by a categorical model than by one that reflects incremental changes. We propose that the State-and-Transition model, developed to describe the dynamics of semi-arid ecosystems, provides an appropriate conceptual framework for characterizing categorical shifts in rural property patterns. Results suggest that changes in population density are spatially correlated with NAV and farm size, and that rural property size is spatially correlated with changes in NAV. With increasing NAV, the proportion of large properties tends to decrease while the area represented by small properties tends to increase. Although a correlation exists between NAV and population density, it is the trend in NAV that appears to be a stronger predictor of land fragmentation. The empirical relationships established herein, viewed within the conceptual framework of the State-and-Transition model, can provide a useful tool for evaluating land use policies for maintaining critical ecosystem services delivered from privately owned land in private land states, such as Texas.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Planificación Ambiental , Dinámica Poblacional , Animales , Planificación Ambiental/economía , Planificación Ambiental/estadística & datos numéricos , Planificación Ambiental/tendencias , Humanos , Modelos Teóricos , Población Rural , Estadística como Asunto , Texas , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...