Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Nat Mater ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605195

RESUMEN

The strength-ductility trade-off has long been a Gordian knot in conventional metallic structural materials and it is no exception in multi-principal element alloys. In particular, at ultrahigh yield strengths, plastic instability, that is, necking, happens prematurely, because of which ductility almost entirely disappears. This is due to the growing difficulty in the production and accumulation of dislocations from the very beginning of tensile deformation that renders the conventional dislocation hardening insufficient. Here we propose that premature necking can be harnessed for work hardening in a VCoNi multi-principal element alloy. Lüders banding as an initial tensile response induces the ongoing localized necking at the band front to produce both triaxial stress and strain gradient, which enables the rapid multiplication of dislocations. This leads to forest dislocation hardening, plus extra work hardening due to the interaction of dislocations with the local-chemical-order regions. The dual work hardening combines to restrain and stabilize the premature necking in reverse as well as to facilitate uniform deformation. Consequently, a superior strength-and-ductility synergy is achieved with a ductility of ~20% and yield strength of 2 GPa during room-temperature and cryogenic deformation. These findings offer an instability-control paradigm for synergistic work hardening to conquer the strength-ductility paradox at ultrahigh yield strengths.

2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 836-841, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621887

RESUMEN

This study aims to construct the element relationship and extension path of clinical evidence knowledge map with Chinese patent medicine, providing basic technical support for the formation and transformation of the evidence chain of Chinese patent medicine and providing collection, induction, and summary schemes for massive and disorganized clinical data. Based on the elements of evidence-based PICOS, the conventional construction methods of knowledge graph were collected and summarized. Firstly, the data entities related to Chinese patent medicine were classified, and entity linking was performed(disambiguation). Secondly, the study associated and classified the attribute information of the data entity. Finally, the logical relationship between entities was constructed, and then the element relationship and extension path of the knowledge map conforming to the characteristics of clinical evidence of Chinese patent medicine were summarized. The construction of the clinical evidence knowledge map of Chinese patent medicine was mainly based on process design and logical structure, and the element relationship of the knowledge map was expressed according to the PICOS principle and evidence level. The extension path crossed three levels(model layer, data layer application, and new evidence application), and the study gradually explored the path from disease, core evaluation indicators, Chinese patent medicine, core prescriptions, syndrome and treatment rules, and medical case comparison(evolution law) to new drug research and development. In this study, the top-level design of the construction of the clinical evidence knowledge map of Chinese patent medicine has been clarified, but it still needs the joint efforts of interdisciplinary disciplines. With the continuous improvement of the map construction technology in line with the characteristics of TCM, the study can provide necessary basic technical support and reference for the development of the TCM discipline.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Medicamentos sin Prescripción/uso terapéutico , Tecnología , Minería de Datos/métodos
3.
Environ Res ; 252(Pt 2): 118751, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38522738

RESUMEN

Haloarchaea with the capacity to degrade alkanes is promising to deal with petroleum pollution in hypersaline environments. However, only a limited number of haloarchaeal species are investigated, and their pathway and mechanism for alkane degradation remain unclear. In this study, Halogranum rubrum RO2-11, a haloarchaeal strain, verified the ability to degrade kerosene and hexadecane in 184 g/L NaCl, with 53% and 52% degradation rates after 9 and 4 days, respectively. Genome sequencing and gene annotation indicated that strain RO2-11 possesses a complete potential alkane-degrading pathway, of which alkane hydroxylases may include CYP450, AlmA, and LadA. Transcriptome and metabolome analyses revealed that the upregulation of related genes in TCA cycle, lysine biosynthesis, and acetylation may help improve hexadecane degradation. Additionally, an alternative degrading pathway of hexadecane based on dual-terminal ß-oxidation may occur in strain RO2-11. It is likely to be the first report of alkane degradation by the genus Halogranum, which may be helpful for applications of oil-pollution bioremediation under high-salt conditions.

4.
Cell Syst ; 15(3): 275-285.e4, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38401538

RESUMEN

Unraveling the mechanisms governing the diversity of ecological communities is a central goal in ecology. Although microbial dispersal constitutes an important ecological process, the effect of dispersal on microbial diversity is poorly understood. Here, we sought to fill this gap by combining a generalized Lotka-Volterra model with experimental investigations. Our model showed that emigration increases the diversity of the community when the immigration rate crosses a defined threshold, which we identified as Ineutral. We also found that at high immigration rates, emigration weakens the relative abundance of fast-growing species and thus enhances the mass effect and increases the diversity. We experimentally confirmed this finding using co-cultures of 20 bacterial strains isolated from the soil. Our model further showed that Ineutral decreases with the increase of species pool size, growth rate, and interspecies interaction. Our work deepens the understanding of the effects of dispersal on the diversity of natural communities.


Asunto(s)
Microbiota , Modelos Biológicos , Microbiota/genética , Emigración e Inmigración , Bacterias
5.
Antioxidants (Basel) ; 13(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38397819

RESUMEN

Membrane transporters are proteins that mediate the entry and exit of substances through the plasma membrane and organellar membranes and are capable of recognizing and binding to specific substances, thereby facilitating substance transport. Membrane transporters are divided into different types, e.g., ion transporters, sugar transporters, amino acid transporters, and aquaporins, based on the substances they transport. These membrane transporters inhibit reactive oxygen species (ROS) generation through ion regulation, sugar and amino acid transport, hormone induction, and other mechanisms. They can also promote enzymatic and nonenzymatic reactions in plants, activate antioxidant enzyme activity, and promote ROS scavenging. Moreover, membrane transporters can transport plant growth regulators, solute proteins, redox potential regulators, and other substances involved in ROS metabolism through corresponding metabolic pathways, ultimately achieving ROS homeostasis in plants. In turn, ROS, as signaling molecules, can affect the activity of membrane transporters under abiotic stress through collaboration with ions and involvement in hormone metabolic pathways. The research described in this review provides a theoretical basis for improving plant stress resistance, promoting plant growth and development, and breeding high-quality plant varieties.

6.
Molecules ; 29(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38202839

RESUMEN

Iridium(III) complexes are emerging as a promising tool in the area of detection and therapy due to their prominent photophysical properties, including higher photostability, tunable phosphorescence emission, long-lasting phosphorescence, and high quantum yields. In recent years, much effort has been devoted to develop novel near-infrared (NIR) iridium(III) complexes to improve signal-to-noise ratio and enhance tissue penetration. In this review, we summarize different classes of organometallic NIR iridium(III) complexes for detection and therapy, including cyclometalated ligand-enabled NIR iridium(III) complexes and NIR-dye-conjugated iridium(III) complexes. Moreover, the prospects and challenges for organometallic NIR iridium(III) complexes for targeted detection and therapy are discussed.


Asunto(s)
Iridio , Relación Señal-Ruido
7.
Sci Rep ; 14(1): 44, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167608

RESUMEN

Some plants do not grow due to the high pH levels of ecological concrete pore solutions. In this paper, we design and build an integrated device featuring a combined microbial film and a transverse/U-shaped grouting film. We have applied to the China Intellectual Property Office for an invention patent on this device. The device overcomes the blockage of the grouting port caused by microbial and vertical grouting. The vertical grouting tube leaves holes inside a specimen, reducing the compressive strength, while the integrated device optimizes and decreases variation in the recycling of microbial bacteria. The reduction in the pore alkalinity of porous ecological concrete resulting from the microbial grouting film of this device is larger than that resulting from a microbial sprayed film. The pH values of porous ecological concrete with microbial grouting films and microbial sprayed films are obtained by the pure slurry soaking method and solid-liquid extraction method, respectively. The pH value is lower for the film obtained by the pure slurry soaking method than for that obtained by the solid-liquid extraction method. Conversely, the pH value of porous ecological concrete with a microbial grouting film is reduced to approximately 8 at an age of 56 days. The compressive strengths of the porous ecological concrete specimens with the two films are almost the same. The results of this study provide the necessary theoretical basis for developing alkali reduction technology for porous ecological concrete with environmental and economic benefits.

8.
Cell Syst ; 15(1): 63-74.e5, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38237552

RESUMEN

In microbial systems, a metabolic pathway can be either completed by one autonomous population or distributed among a consortium performing metabolic division of labor (MDOL). MDOL facilitates the system's function by reducing the metabolic burden; however, it may hinder the function by reducing the exchange efficiency of metabolic intermediates among individuals. As a result, the function of a community is influenced by the trade-offs between the metabolic specialization and versatility of individuals. To experimentally test this hypothesis, we deconstructed the naphthalene degradation pathway into four steps and introduced them individually or combinatorically into different strains with varying levels of metabolic specialization. Using these strains, we engineered 1,456 synthetic consortia and found that 74 consortia exhibited higher degradation function than both the autonomous population and rigorous MDOL consortium. Quantitative modeling provides general strategies for identifying the most effective MDOL configuration. Our study provides critical insights into the engineering of high-performance microbial systems.


Asunto(s)
Consorcios Microbianos , Microbiota , Humanos , Redes y Vías Metabólicas
9.
Front Plant Sci ; 14: 1228084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780513

RESUMEN

Introduction: Water is one of the important factors affecting the yield of leafy vegetables. Lettuce, as a widely planted vegetable, requires frequent irrigation due to its shallow taproot and high leaf evaporation rate. Therefore, screening drought-resistant genotypes is of great significance for lettuce production. Methods: In the present study, significant variations were observed among 13 morphological and physiological traits of 42 lettuce genotypes under normal irrigation and water-deficient conditions. Results: Frequency analysis showed that soluble protein (SP) was evenly distributed across six intervals. Principal component analysis (PCA) was conducted to transform the 13 indexes into four independent comprehensive indicators with a cumulative contribution ratio of 94.83%. The stepwise regression analysis showed that root surface area (RSA), root volume (RV), belowground dry weight (BDW), soluble sugar (SS), SP, and leaf relative water content (RWC) could be used to evaluate and predict the drought resistance of lettuce genotypes. Furthermore, the drought resistance ranks of the genotypes were similar according to the drought resistance comprehensive evaluation value (D value), comprehensive drought resistance coefficient (CDC), and weight drought resistance coefficient (WDC). The cluster analysis enabled the division of the 42 genotypes into five drought resistance groups; among them, variety Yidali151 was divided into group I as a strongly drought-resistant variety, group II included 6 drought-resistant genotypes, group III included 16 moderately drought-resistant genotypes, group IV included 12 drought-sensitive genotypes, and group V included 7 highly drought-sensitive genotypes. Moreover, a representative lettuce variety was selected from each of the five groups to verify its water resistance ability under water deficit conditions. In the drought-resistant variety, it was observed that stomatal density, superoxide anion (O2.-wfi2) production rate, and malondialdehyde (MDA) content exhibited a low increase rate, while catalase (CAT), superoxide dismutase (SOD), and that peroxidase (POD) activity exhibited a higher increase than in the drought-sensitive variety. Discussion: In summary, the identified genotypes are important because their drought-resistant traits can be used in future drought-resistant lettuce breeding programs and water-efficient cultivation.

10.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37762179

RESUMEN

The deleterious effects of drought stress have led to a significant decline in vegetable production, ultimately affecting food security. After sensing drought stress signals, vegetables prompt multifaceted response measures, eventually leading to changes in internal cell structure and external morphology. Among them, it is important to highlight that the changes, including changes in physiological metabolism, signal transduction, key genes, and hormone regulation, significantly influence drought stress tolerance in vegetables. This article elaborates on vegetable stress tolerance, focusing on structural adaptations, key genes, drought stress signaling transduction pathways, osmotic adjustments, and antioxidants. At the same time, the mechanisms of exogenous hormones such as abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) toward improving the adaptive drought tolerance of vegetables were also reviewed. These insights can enhance the understanding of vegetable drought tolerance, supporting vegetable tolerance enhancement by cultivation technology improvements under changing climatic conditions, which provides theoretical support and technical reference for innovative vegetable stress tolerance breeding and food security.


Asunto(s)
Sequías , Verduras , Fitomejoramiento , Resistencia a la Sequía , Hormonas
11.
Science ; 382(6667): 185-190, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37708297

RESUMEN

Coarse-grained materials are widely accepted to display the highest strain hardening and the best tensile ductility. We experimentally report an attractive strain hardening rate throughout the deformation stage at 77 kelvin in a stable single-phase alloy with gradient dislocation cells that even surpasses its coarse-grained counterparts. Contrary to conventional understanding, the exceptional strain hardening arises from a distinctive dynamic structural refinement mechanism facilitated by the emission and motion of massive multiorientational tiny stacking faults (planar defects), which are fundamentally distinct from the traditional linear dislocation-mediated deformation. The dominance of atomic-scale planar deformation faulting in plastic deformation introduces a different approach for strengthening and hardening metallic materials, offering promising properties and potential applications.

12.
Front Microbiol ; 14: 1218828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637129

RESUMEN

Microbes play central roles in ocean food webs and global biogeochemical processes. Yet, the information available regarding the highly diverse bacterial communities in these systems is not comprehensive. Here we investigated the diversity, assembly process, and species coexistence frequency of bacterial communities in seawater and sediment across ∼600 km of the eastern Chinese marginal seas using 16S rRNA gene amplicon sequencing. Our analyses showed that compared with seawater, bacterial communities in sediment possessed higher diversity and experienced tight phylogenetic distribution. Neutral model analysis showed that the relative contribution of stochastic processes to the assembly process of bacterial communities in sediment was lower than that in seawater. Functional prediction results showed that sulfate-reducing bacteria (SRB) were enriched in the core bacterial sub-communities. The bacterial diversities of both sediment and seawater were positively associated with the relative abundance of SRB. Co-occurrence analysis showed that bacteria in seawater exhibited a more complex interaction network and closer co-occurrence relationships than those in sediment. The SRB of seawater were centrally located in the network and played an essential role in sustaining the complex network. In addition, further analysis indicated that the SRB of seawater helped maintain the high stability of the bacterial network. Overall, this study provided further comprehensive information regarding the characteristics of bacterial communities in the ocean, and provides new insights into keystone taxa and their roles in sustaining microbial diversity and stability in ocean.

13.
Nat Mater ; 22(9): 1057-1058, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37644223
14.
Front Plant Sci ; 14: 1167145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332726

RESUMEN

Introduction: Grafting is a commonly used cultural practice to counteract salt stress and is especially important for vegetable production. However, it is not clear which metabolic processes and genes are involved in the response of tomato rootstocks to salt stress. Methods: To elucidate the regulatory mechanism through which grafting enhances salt tolerance, we first evaluated the salt damage index, electrolyte permeability and Na+ accumulation in tomato (Solanum lycopersicum L.) leaves of grafted seedlings (GSs) and nongrafted seedlings (NGSs) subjected to 175 mmol·L- 1 NaCl for 0-96 h, covering the front, middle and rear ranges. Results: Compared with the NGS, the GSs were more salt tolerant, and the Na+ content in the leaves decreased significantly. Through transcriptome sequencing data analysis of 36 samples, we found that GSs exhibited more stable gene expression patterns, with a lower number of DEGs. WRKY and PosF21 transcription factors were significantly upregulated in the GSs compared to the NGSs. Moreover, the GSs presented more amino acids, a higher photosynthetic index and a higher content of growth-promoting hormones. The main differences between GSs and NGSs were in the expression levels of genes involved in the BR signaling pathway, with significant upregulation of XTHs. The above results show that the metabolic pathways of "photosynthetic antenna protein", "amino acid biosynthesis" and "plant hormone signal transduction" participate in the salt tolerance response of grafted seedlings at different stages of salt stress, maintaining the stability of the photosynthetic system and increasing the contents of amino acids and growth-promoting hormones (especially BRs). In this process, the transcription factors WRKYs, PosF21 and XTHs might play an important role at the molecular level. Discussion: The results of this study demonstrates that grafting on salt tolerant rootstocks can bring different metabolic processes and transcription levels changes to scion leaves, thereby the scion leaves show stronger salt tolerance. This information provides new insight into the mechanism underlying tolerance to salt stress regulation and provides useful molecular biological basis for improving plant salt resistance.

15.
Microorganisms ; 11(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37317155

RESUMEN

Biosurfactants have significant applications in various industries, including microbial-enhanced oil recovery (MEOR). While the state-of-the-art genetic approaches can generate high-yield strains for biosurfactant production in fermenters, there remains a critical challenge in enhancing biosurfactant-producing strains for use in natural environments with minimal ecological risks. The objectives of this work are enhancing the strain's capacity for rhamnolipids production and exploring the genetic mechanisms for its improvement. In this study, we employed atmospheric and room-temperature plasma (ARTP) mutagenesis to enhance the biosynthesis of rhamnolipids in Pseudomonas sp. L01, a biosurfactant-producing strain isolated from petroleum-contaminated soil. Following ARTP treatment, we identified 13 high-yield mutants, with the highest yield of 3.45 ± 0.09 g/L, representing a 2.7-fold increase compared to the parent strain. To determine the genetic mechanisms behind the enhanced rhamnolipids biosynthesis, we sequenced the genomes of the strain L01 and five high-yield mutants. A comparative genomic analysis suggested that mutations in genes related to the synthesis of lipopolysaccharides (LPS) and the transport of rhamnolipids may contribute to the improved biosynthesis. To the best of our knowledge, this is the first instance of utilizing the ARTP approach to improve rhamnolipid production in Pseudomonas strains. Our study provides valuable insights into the enhancement of biosurfactant-producing strains and the regulatory mechanisms of rhamnolipids biosynthesis.

16.
Sci Total Environ ; 892: 164577, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37271379

RESUMEN

Microorganisms interact with each other through exchanging metabolites as well as signals molecules. This exchange typically depends on metabolites or signaling molecules diffusing in aqueous media within spatially connected habitats, and it only occurs within a short range. However, different microorganisms frequently live in spatially discontinuous micro-habitats without the connections of aqueous media. How microorganisms populating such spatially discontinuous micro-habitats interact remains poorly understood. Here, we show that a bacterial strain, Corynebacterium glutamicum ATCC13032T, produces high amounts of ammonia in its local habitat, which disperses over long distances (up to 12 cm) through the air. As a result, the pH of another spatially disconnected habitat increases, thus inducing the growth of an acid-sensitive strain (Glycocaulis alkaliphilus 6B-8T). We also show that ammonia-mediated long-distance interactions can be commonly found in various bacterial communities. In conclusion, our work demonstrates that bacteria growing in spatially discontinuous micro-habitats can interact with each other through gaseous diffusion of volatile compounds. This finding expands our understanding of the spatial scale at which bacteria can interact and provides new insights into how spatially separated species are connected to maximizing community-level commensalism.


Asunto(s)
Amoníaco , Bacterias , Amoníaco/metabolismo , Bacterias/metabolismo , Ecosistema , Concentración de Iones de Hidrógeno
17.
Front Plant Sci ; 14: 1192340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377810

RESUMEN

Introduction: Strigolactone (SL) and auxin are two important phytohormones involved in plant root development, but whether they show synergistic or mutual promotion effects during adventitious root (AR) formation has not been adequately explored. Methods: In this study, we investigated the mechanisms of GR24 (synthetic SL) and indole-3-acetic acid (IAA; a type of auxin) in the formation of ARs using melon as the study material. Results: Morphological measurements showed that the AR number, length, superficial area, and volume under the GR24 treatment were 1.60-3.27, 1.58-3.99, 2.06-3.42, and 3.00-6.11 times greater than those of the control group, respectively, at 6-10 days; the GR24+IAA treatment further promoted AR formation in melon seedlings, and the AR number, length, superficial area, and volume under the GR24+IAA treatment were 1.44-1.51, 1.28-1.73, 1.19-1.83, and 1.31-1.87 times greater than those obtained with the GR24 treatment, respectively. Transcriptome analysis revealed 2,742, 3,352, and 2,321 differentially expressed genes (DEGs) identified from the GR24 vs. control, GR24+IAA vs. control, and GR24+IAA vs. GR24 comparisons, respectively. The GR24 treatment and GR24+IAA treatment affected auxin and SL synthesis as well as components of the phytohormone signal transduction pathway, such as auxin, brassinosteroid (BR), ethylene (ETH), cytokinin (CK), gibberellin (GA), and abscisic acid (ABA). The concentrations of auxin, GA, zeatin (ZT), and ABA were evaluated using high-performance liquid chromatography (HPLC). From 6 to 10 days, the auxin, GA, and ZT contents in the GR24 treatment group were increased by 11.48%-15.34%, 11.83%-19.50%, and 22.52%-66.17%, respectively, compared to the control group, and these features were increased by 22.00%-31.20%, 21.29%-25.75%, 51.76%-98.96%, respectively, in the GR24+IAA treatment group compared with the control group. Compared to that in the control, the ABA content decreased by 10.30%-11.83% in the GR24 treatment group and decreased by 18.78%-24.00% in the GR24+IAA treatment group at 6-10 days. Discussion: Our study revealed an interaction between strigolactone and auxin in the induction of AR formation in melon seedlings by affecting the expression of genes related to plant hormone pathways and contents.

18.
Clin Oral Implants Res ; 34(9): 947-957, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37358250

RESUMEN

OBJECTIVES: This study aimed to investigate the relationship between microbial communities and the severity of peri-implant mucosal bleeding in peri-implant mucositis. MATERIALS AND METHODS: Submucosal plaque samples were collected from 54 implants divided into the healthy implant (HI) group, peri-implant mucositis (PM) group, and peri-implantitis (PI) group. Sequencing of 16S rRNA was performed using the Illumina MiSeq platform. Alpha diversity (i.e., Shannon and Chao index) and beta diversity were used to measure microbial diversity within and between microbial communities, respectively. Differences in microbial taxa between groups were assessed via linear discriminate analysis effect size. Correlation between the modified sulcus bleeding index (mSBI) and microbial dysbiosis index (MDI) was examined using Spearman correlation analysis and linear models. RESULTS: The submucosal bacterial richness (Chao index) was positively correlated with the mean mSBI in the PM group. As the mean mSBI increased in the PM group, the beta diversity became closer to that of the PI group. In the PM group, the abundances of 47 genera were significantly correlated with the mean mSBI, and the MDI was positively associated with the mean mSBI. Fourteen of the forty-seven genera were discriminative taxa between the HI and PI groups, and the abundances of these biomarkers became closer to those in the PI group in the progression of peri-implant disease. CONCLUSIONS: A higher mSBI value corresponded to a higher risk of microbial dysbiosis in peri-implant mucositis. The biomarkers identified may be useful for monitoring the progression of peri-implant disease.


Asunto(s)
Implantes Dentales , Mucositis , Periimplantitis , Periodontitis , Humanos , Periimplantitis/microbiología , Implantes Dentales/efectos adversos , Implantes Dentales/microbiología , Mucositis/microbiología , Disbiosis , ARN Ribosómico 16S/genética , Biomarcadores
19.
ACS Synth Biol ; 12(7): 1972-1980, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37312539

RESUMEN

Metabolic division of labor (MDOL) represents one of the most commonly occurring interactions within natural microbial communities. Specifically, in a variety of MDOL systems engaged in hydrocarbon degradation, a sequential degradation is performed by several members with final products that are necessary for the growth of each member. In these MDOL systems, each strain catalyzes one or more specific reactions of a multistep metabolic pathway, whose end products are then allocated among the participants. While the benefit allocation is independent of metabolic flux in well-mixed environments, it remains unclear how the benefits are allocated when diffusion is limited. Here, we investigated how MDOL communities assemble in a diffusion-limited environment, by combining mathematical modeling with experimental inquiry using a synthetic consortium engaged in MDOL. Our model analysis in a diffusion-limited environment showed that, when the growth of all populations in the community relies on the final product that can only be produced by the last population, a diffusion gradient of the final products may create a bias favoring the member producing the final products, resulting in a higher relative abundance of the final product producer. Moreover, such asymmetric allocation of the final products is enhanced by both the lower diffusion rate and the higher metabolic flux (i.e., the higher yields of the final products) in the MDOL. Our results show that in a diffusively confined environment, metabolic flux constitutes a determining factor in the assembly of the MDOL community. Together, our findings are critical for a better understanding of how resource-sharing microbial communities are established and should assist in designing such communities for improved biomanufacturing and bioremediation.


Asunto(s)
Microbiota , Humanos , Redes y Vías Metabólicas , Biodegradación Ambiental
20.
Sci Rep ; 13(1): 7988, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198206

RESUMEN

The latest discovery of sulfurous natural gas marked a breakthrough in the Cenozoic natural gas exploration in the southwestern margin of Qaidam Basin. The 16S rRNA analyses were performed on the crude oil samples from H2S-rich reservoirs in the Yuejin, Shizigou and Huatugou profiles, to understand the sulfurous gas origin, which was also integrated with carbon and hydrogen isotopes of alkane and sulfur isotopes of H2S collected from the Yingxiongling Area. Results show that the microorganisms in samples can survive in the hypersaline reservoirs, and can be classified into multiple phyla, including Proteobacteria, Planctomycetes, Firmicutes, Bacteroidetes, and Haloanaerobiaeota. Methanogens are abundant in all of the three profiles, while sulfate-reducing bacteria are abundant in Yuejin and Huatugou profiles, contributing to the methane and H2S components in the natural gas. The carbon, hydrogen and sulfur isotopes of sulfurous natural gas in the Yingxiongling Area show that the natural gas is a mixture of coal-type gas and oil-type gas, which was primarily derived from thermal degradation, and natural gas from the Yuejin and Huatugou profiles also originated from biodegradation. The isotopic analysis agrees well with the 16S rRNA results, i.e., H2S-rich natural gas from the Cenozoic reservoirs in the southwest margin of the Qaidam Basin was primarily of thermal genesis, with microbial genesis of secondary importance.


Asunto(s)
Microbiota , Yacimiento de Petróleo y Gas , Bacterias , Gas Natural/microbiología , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Microbiota/genética , China , Hidrógeno/metabolismo , Isótopos de Azufre , Carbono/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...