Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(17): 6244-6268, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699270

RESUMEN

Because of its abundant resources, low cost and high reversible specific capacity, hard carbon (HC) is considered as the most likely commercial anode material for sodium-ion batteries (SIBs). Therefore, reasonable design and effective strategies to regulate the structure of HCs play a crucial role in promoting the development of SIBs. Herein, the progress in the preparation approaches for HC anode materials is systematically overviewed, with a special focus on the comparison between traditional fabrication methods and advanced strategies emerged in recent years in terms of their influence on performance, including preparation efficiency, initial coulombic efficiency (ICE), specific capacity and rate capability. Furthermore, the advanced strategies are categorized into two groups: those exhibiting potential for large-scale production to replace traditional methods and those presenting guidelines for achieving high-performance HC anodes from top-level design. Finally, challenges and future development prospects to achieve high-performance HC anodes are also proposed. We believe that this review will provide beneficial guidance to actualize the truly rational design of advanced HC anodes, facilitating the industrialization of SIBs and assisting in formulating design rules for developing high-end advanced electrode materials for energy storage devices.

2.
Angew Chem Int Ed Engl ; : e202406889, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742478

RESUMEN

Given the merits of abundant resource, low cost and high electrochemical activity, hard carbons have been regarded as one of the most commercializable anode material for sodium-ion batteries (SIBs). However, poor rate capability is one of the main obstacles that severely hinder its further development. In addition, the relationships between preparation method, material structure and electrochemical performance have not been clearly elaborated. Herein, a simple but effective strategy is proposed to accurately construct the multiple structural features in hard carbon via adjusting the components of precursors. Through detailed physical characterization of the hard carbons derived from different regulation steps, and further combined with in-situ Raman and galvanostatic intermittent titration technique (GITT) analysis, the network of multiple relationships between preparation method, microstructure, sodium storage behavior and electrochemical performance have been successfully established. Simultaneously, exceptional rate capability about 108.8 mAh g-1 at 8 A g-1 have been achieved from RHC sample with high reversible capacity and desirable initial Coulombic efficiency (ICE). Additionally, the practical applications can be extended to cylindrical battery with excellent cycle behaviors. Such facile approach can provide guidance for large-scale production of high-performance hard carbons and provides the possibility of building practical SIBs with high energy density and durability.

3.
Adv Mater ; : e2400169, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607696

RESUMEN

Intrinsically safe sodium-ion batteries are considered as a promising candidate for large-scale energy storage systems. However, the high flammability of conventional electrolytes may pose serious safety threats and even explosions. Herein, a strategy of constructing a deep eutectic electrolyte is proposed to boost the safety and electrochemical performance of succinonitrile (SN)-based electrolyte. The strong hydrogen bond between S═O of 1,3,2-dioxathiolane-2,2-dioxide (DTD) and the α-H of SN endows the enhanced safety and compatibility of SN with Lewis bases. Meanwhile, the DTD participates in the inner Na+ sheath and weakens the coordination number of SN. The unique solvation configuration promotes the formation of robust gradient inorganic-rich electrode-electrolyte interphase, and merits stable cycling of half-cells in a wide temperature range, with a capacity retention of 82.8% after 800 cycles (25 °C) and 86.3% after 100 cycles (60 °C). Correspondingly, the full cells deliver tremendous improvement in cycling stability and rate performance.

4.
Chem Sci ; 15(13): 4833-4838, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550702

RESUMEN

Sodium metal batteries have attracted increasing interest recently, but suffer from severe dendrite growth caused by uneven Na plating/stripping behavior, which may result in the piercing of the membrane, with short circuiting and even cause explosions. Herein, a conductive and sodiophilic Ag coating layer is introduced to regulate Na deposition behaviors for highly reversible sodium metal batteries. Ag coated Zn foil with enhanced sodiophilicity, rapid Na+ transfer kinetics and superior electronic conductivity guarantee the homogenized Na+ ion and electric field distribution. This enables remarkably low overpotentials and uniform Na plating/stripping behavior with ultrahigh Coulombic efficiency of 99.9% during 500 cycles. As expected, the enhanced electrochemical performance of the anode-less battery and anode-free battery coupled with Prussian blue is achieved with the help of Ag coating. This work emphasizes the role of the conductive and sodiophilic coating layer in regulating the Na deposition behaviors for highly reversible sodium metal batteries.

5.
Small ; : e2309412, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342678

RESUMEN

Ammonium vanadates, featuring an N─H···O hydrogen bond network structure between NH4 + and V─O layers, have become popular cathode materials for aqueous zinc-ion batteries (AZIBs). Their appeal lies in their multi-electron transfer, high specific capacity, and facile synthesis. However, a major drawback arises as Zn2+ ions tend to form bonds with electronegative oxygen atoms between V─O layers during cycling, leading to irreversible structural collapse. Herein, Li+ pre-insertion into the intermediate layer of NH4 V4 O10 is proposed to enhance the electrochemical activity of ammonium vanadate cathodes for AZIBs, which extends the interlayer distance of NH4 V4 O10 to 9.8 Å and offers large interlaminar channels for Zn2+ (de)intercalation. Moreover, Li+ intercalation weakens the crystallinity, transforms the micromorphology from non-nanostructured strips to ultrathin nanosheets, and increases the level of oxygen defects, thus exposing more active sites for ion and electron transport, facilitating electrolyte penetration, and improving electrochemical kinetics of electrode. In addition, the introduction of Li+ significantly reduces the bandgap by 0.18 eV, enhancing electron transfer in redox reactions. Leveraging these unique advantages, the Li+ pre-intercalated NH4 V4 O10 cathode exhibits a high reversible capacity of 486.1 mAh g-1 at 0.5 A g-1 and an impressive capacity retention rate of 72% after 5,000 cycles at 5 A g-1 .

6.
Nanoscale ; 16(7): 3685-3692, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38288750

RESUMEN

Trimetallic nanowires (NWs) have drawn much attention in efficient alcohol oxidation reaction (AOR) due to their unique features, including high atomic utilization efficiency and fast electron transfer ability. However, a universal strategy to synthesize Pd-based trimetallic NWs with high catalytic performance is still lacking. Herein, we develop a universal method for facile synthesis of PdBiM (M = Pt, Ru, Ir, Co, Cu) NWs with excellent AOR activities. By taking PdBiPt NWs as an example, the formation mechanism was investigated, and it is found that introduction of bismuth (Bi) plays an important role in facilitating the formation of the NW structure. Moreover, the PdBiPt NWs deliver an outstanding performance toward both the ethanol oxidation reaction (EOR) and the methanol oxidation reaction (MOR). Density functional theory (DFT) calculations together with experimental results disclose that the moderate electronic structure of trimetallic PdBiPt NWs can optimize the adsorption of OHads and weaken the adsorption of COads, thereby leading to the substantially enhanced AOR performance. We believe that this work can inspire the design of multimetallic NWs as high-performance catalysts.

7.
Small ; 20(12): e2307132, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946700

RESUMEN

Large reserves, high capacity, and low cost are the core competitiveness of disordered carbon materials as excellent anode materials for sodium-ion batteries (SIBs). And the existence and improper treatment of a large number of organic solid wastes will aggravate the burden on the environment, therefore, it is significant to transform wastes into carbon-based materials for sustainable energy utilization. Herein, a kind of hard carbon materials are reported with waste biomass-foam as the precursor, which can improve the sodium storage performance through pre-oxidation strategy. The introduction of oxygen-containing groups can promote structural cross-linking, and inhibit the melting and rearrangement of carbon structure during high-temperature carbonization that produces a disordered structure with a suitable degree of graphitization. Moreover, the micropore structure are also regulated during the high-temperature carbonization process, which is conducive to the storage of sodium ions in the low-voltage plateau region. The optimized sample as an electrode material exhibits excellent reversible specific capacity (308.0 mAh g-1) and initial Coulombic efficiency (ICE, 90.1%). In addition, a full cell with the waste foam-derived hard carbon anode and a Na3V2(PO4)3 cathode is constructed with high ICE and energy density. This work provides an effective strategy to conversion the waste to high-value hard carbon anode for sodium-ion batteries.

8.
Adv Mater ; 35(40): e2302613, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37390487

RESUMEN

Hard carbon anodes with all-plateau capacities below 0.1 V are prerequisites to achieve high-energy-density sodium-ion storage, which holds promise for future sustainable energy technologies. However, challenges in removing defects and improving the insertion of sodium ions head off the development of hard carbon to achieve this goal. Herein, a highly cross-linked topological graphitized carbon using biomass corn cobs through a two-step rapid thermal-annealing strategy is reported. The topological graphitized carbon constructed with long-range graphene nanoribbons and cavities/tunnels provides a multidirectional insertion of sodium ions whilst eliminating defects to absorb sodium ions at the high voltage region. Evidence from advanced techniques including in situ XRD, in situ Raman, and in situ/ex situ transmission electron microscopy (TEM) indicates that the sodium ions' insertion and Na cluster formation occurred between curved topological graphite layers and in the topological cavity of adjacent graphite band entanglements. The reported topological insertion mechanism enables outstanding battery performance with a single full low-voltage plateau capacity of 290 mAh g-1 , which is almost 97% of the total capacity.

9.
Nanoscale Adv ; 5(3): 861-868, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36756518

RESUMEN

Developing high-performance electrocatalysts toward hydrogen evolution reaction (HER) in alkaline media is highly desirable for industrial applications in the field of water splitting but is still challenging. Herein, we successfully synthesized RuCu nanoflowers (NFs) with tunable atomic ratios using a facile wet chemistry method. The Ru3Cu NFs need only 55 mV to achieve a current density of 10 mA cm-2, which shows ideal durability with only 4 mV decay after 2000 cycles, largely outperforming the catalytic properties of commercial Pt/C. The Ru3Cu NFs comprise many nanosheets that can provide more active sites for HER. In addition, the introduction of Cu can modulate the electronic structure of Ru, facilitate water dissociation, and optimize H adsorption/desorption ability. Thus, the flower-like structure together with the proper incorporation of Cu boosts HER performance.

10.
Nanoscale Adv ; 4(4): 1158-1163, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36131762

RESUMEN

PtRu/C is a well-known commercial electrocatalyst with promising performance for the methanol oxidation reaction (MOR). Further improving the MOR properties of PtRu-based electrocatalysts is highly desirable, especially through structure design. Here we report a facile approach for the synthesis of PdPtRu nanocages with different components through a seed-mediated approach followed by chemical etching. The Pd@PtRu nanocubes were first generated using Pd nanocubes as the seeds and some Pd atoms were subsequently etched away, leading to the nanocages. When evaluated as electrocatalysts for the MOR in acidic media, the PdPtRu nanocages exhibited substantially enhanced catalytic activity and stability relative to commercial Pt/C and PtRu/C. Specifically, PdPt2.5Ru2.4 achieved the highest specific (8.2 mA cm-2) and mass (0.75 mA mgPt -1) activities for the MOR, which are 2.2 and 4.2 times higher than those of commercial Pt/C. Such an enhancement can be attributed to the highly open structure of the nanocages, and the possible synergistic effect between the three components.

11.
Nanoscale Adv ; 4(10): 2288-2293, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133699

RESUMEN

Formate is considered as the most economically viable product of the prevalent electrochemical CO2 reduction (ECR) products. However, most of the catalysts for ECR to formate in aqueous solution often suffer from low activity and limited selectivity. Herein, we report a novel Ce-doped Bi2O3 nanosheet (NS) electrocatalyst by a facile solvothermal method for highly efficient ECR to formate. The 5.04% Ce-doped Bi2O3 NSs exhibited a current density of 37.4 mA cm-2 for the production of formate with a high formate faradaic efficiency (FE) of 95.8% at -1.12 V. The formate FE was stably maintained at about 90% in a wide potential range from -0.82 to -1.22 V. More importantly, density functional theory (DFT) calculations revealed that Ce doping can lead to a significant synergistic effect, which promotes the formation and the adsorption of the OCHO* intermediate for ECR, while significantly inhibiting the hydrogen evolution reaction via depressing the formation of *H, thus helping achieve high current density and FE. This work provides an effective and promising strategy to develop efficient electrocatalysts with heteroatom doping and new insights for boosting ECR into formate.

12.
Front Chem ; 10: 993894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110140

RESUMEN

Combining the core-shell structure with the optimization of surface composition and structure in the shell is a fantastic strategy to enhance the electrocatalytic performances. Here, we synthesized trimetallic Au@PtxSny core-shell nanoparticles (NPs) with tunable composition and structure of Pt-Sn alloyed shells. Impressively, the Au@PtSn core-shell NPs with hexagonal PtSn alloyed shells exhibited the highest mass activity and specific activity toward ethanol oxidation reaction (EOR) in alkaline electrolyte, which are 13.0 and 12.7 times higher than those of the commercial Pt/C. In addition, the Au@PtSn core-shell NPs displayed the best stability compared to commercial Pt/C, with only 44.8% loss vs. 86.8% loss in mass activity after 1,000 s due to the stronger anti-poisoning ability for reaction intermediates. The theory calculations reveal that the introduction of Au core and alloying Pt with Sn both endow Pt with an appropriate d-band center, and thus effectively boosting the EOR activity.

13.
Nanoscale ; 13(46): 19610-19616, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816271

RESUMEN

Electrocatalytic CO2 reduction to formate is considered as a perfect route for efficient conversion of the greenhouse gas CO2 to value-added chemicals. However, it still remains a huge challenge to design a catalyst with both high catalytic activity and selectivity for target products. Here we report a unique Sn-doped Bi2O3 nanosheet (NS) electrocatalyst with different atomic percentages of Sn (1.2, 2.5, and 3.8%) prepared by a simple solvothermal method for highly efficient electrochemical reduction of CO2 to formate. Of them, the 2.5% Sn-doped Bi2O3 NSs exhibited the highest faradaic efficiency (FE) of 93.4% with a current density of 24.3 mA cm-2 for formate at -0.97 V in the H-cell and a maximum current density of nearly 50 mA cm-2 was achieved at -1.27 V. The formate FE is stable maintained at over 90% in a wide potential range from -0.87 V to -1.17 V. Electrochemical and density functional theory (DFT) analyses of undoped and Sn doped Bi2O3 NSs indicated that the strong synergistic effect between Sn and Bi is responsible for the enhancement in the adsorption capacity of the OCHO* intermediate, and thus the activity for formate production. In addition, we coupled 2.5% Sn-doped Bi2O3 NSs with a dimensionally stable anode (DSA) to realize battery-driven highly active CO2RR and OER with decent activity and efficiency.

14.
Front Chem ; 9: 683450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095088

RESUMEN

Pt-based multimetallic nanorings with a hollow structure are attractive as advanced catalysts due to their fantastic structure feature. However, the general method for the synthesis of such unique nanostructures is still lack. Here we report the synthesis of Pd@PtM (M = Rh, Ni, Pd, Cu) multimetallic nanorings by selective epitaxial growth of Pt alloyed shells on the periphery of Pd nanoplates in combination with oxidative etching of partial Pd in the interior. In situ generation of CO and benzoic acid arising from interfacial catalytic reactions between Pd nanoplates and benzaldehyde are critical to achieve high-quality Pt-based multimetallic nanorings. Specifically, the in-situ generated CO promotes the formation of Pt alloyed shells and their epitaxial growth on Pd nanoplates. In addition, the as-formed benzoic acid and residual oxygen are responsible for selective oxidative etching of partial Pd in the interior. When evaluated as electrocatalysts, the Pd@PtRh nanorings exhibit remarkably enhanced activity and stability for ethanol oxidation reaction (EOR) compared to the Pd@PtRh nanoplates and commercial Pt/C due to their hollow nanostructures.

15.
Nanoscale Adv ; 4(1): 111-116, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36132945

RESUMEN

The strain effect is a critical knob to tune the catalytic performance and has received unprecedented research interest recently. However, it is difficult to distinguish the strain effect from the synergistic effect, especially in alloyed catalysts. Here we have synthesized Pd@PdAg icosahedra and {111} truncated bi-pyramids with only different surface strains between them as electrocatalysts for the ethanol oxidation reaction (EOR). Due to the same exposed facets and compositions of the two electrocatalysts, their EOR performances are mainly determined by the surface strains of PdAg alloys. These two electrocatalysts provide a perfect model to investigate the role of the strain effect in tuning the EOR performance. It is indicated that Pd@PdAg {111} truncated bi-pyramids with a surface strain of 0.3% show better catalytic activity and durability than Pd@PdAg icosahedra with a surface strain of 2.1% including commercial Pd/C. Density functional theory (DFT) calculations reveal that the lowered d-band center of 0.3% strained PdAg alloys relative to 2.1% strained ones reduced the adsorption energy of the acetate-evolution key intermediate *CH3CO, thereby promoting the enhancement in the catalytic performance of Pd@PdAg nanocrystals for the EOR. Electrochemical analysis further verifies this demonstration on the key role of the strain effect in PdAg alloys for tuning catalytic performance.

16.
RSC Adv ; 10(21): 12689-12694, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35497612

RESUMEN

Developing an efficient Pt-based multimetallic electrocatalyst with well-defined shapes for methanol oxidation reaction (MOR) is critical, however, it still remains challenging. Here we report a one-pot approach for the synthesis of ternary PtPdCu alloy hexapods with different compositions. Their MOR activities increased in the sequence Pt2PdCu4 < Pt3PdCu4 < Pt5PdCu5, and were substantially higher than that of commercial Pt/C. Specifically, the Pt5PdCu5 hexapods exhibited the highest mass (0.97 mA µgPt -1) and specific (7.39 mA cm-2) activities towards MOR, and were 5.4 and 19.4 times higher than those of commercial Pt/C (0.18 mA µgPt -1 and 0.38 mA cm-2), respectively. This enhancement could be probably attributed to the bifunctional mechanism and ligand effect through the addition of Cu and Pd as well as the unique dendritic structure. The better tolerance for CO poisoning also endowed the PtPdCu hexapods with superior durability relative to commercial Pt/C.

17.
Adv Sci (Weinh) ; 6(24): 1902249, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871873

RESUMEN

Developing an efficient Pt-based electrocatalyst with well-defined structures for the methanol oxidation reaction (MOR) is critical, however, still remains a challenge. Here, a one-pot approach is reported for the synthesis of Pd3Pb/Pt n Pb nanocubes with tunable Pt composition varying from 3.50 to 2.37 and 2.07, serving as electrocatalysts toward MOR. Their MOR activities increase in a sequence of Pd3Pb/Pt3.50Pb << Pd3Pb/Pt2.07Pb < Pd3Pb/Pt2.37Pb, which are substantially higher than that of commercial Pt/C. Specifically, Pd3Pb/Pt2.37Pb electrocatalysts achieve the highest specific (13.68 mA cm-2) and mass (8.40 A mgPt -1) activities, which are ≈8.8 and 6.8 times higher than those of commercial Pt/C, respectively. Structure characterizations show that Pd3Pb/Pt2.37Pb and Pd3Pb/Pt2.07Pb are dominated by hexagonal-structured PtPb intermetallic phase on the surface, while the surface of Pd3Pb/Pt3.50Pb is mainly composed of face-centered cubic (fcc)-structured Pt x Pb phase. As such, hexagonal-structured PtPb phase is much more active than the fcc-structured Pt x Pb one toward MOR. This demonstration is supported by density functional theory calculations, where the hexagonal-structured PtPb phase shows the lowest adsorption energy of CO. The decrease in CO adsorption energy and structural stability also endows Pd3Pb/Pt n Pb electrocatalysts with superior durability relative to commercial Pt/C.

18.
Nanoscale ; 11(37): 17301-17307, 2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31513211

RESUMEN

Although tremendous efforts have been devoted to exploring non-Pt based electrocatalysts toward the oxygen reduction reaction (ORR), achievements in both catalytic activity and durability are still far from satisfactory. Here, we report a facile approach for the synthesis of intermetallic Pd3Pb ultrathin nanoplate-constructed flowers. Such highly opened hierarchical nanostructures with an ordered phase and low-coordinated edge sites exhibited a substantially enhanced activity toward the ORR. Especially, the intermetallic Pd3Pb nanoflowers achieved a record-breaking mass activity (1.14 mA µgPd-1) in an alkaline solution at 0.9 V vs. a reversible hydrogen electrode among the reported Pd-based ORR electrocatalysts to date, which was 1.8, 3.9 and 11.4 times higher than those of intermetallic Pd3Pb nanocubes, Pd3Pb dendrites and commercial Pt/C, respectively. More importantly, the intermetallic Pd3Pb nanoflowers also showed a higher durability with only 23.7% loss in mass activity after 10 000 cycles compared to the commercial Pt/C (35% loss in mass activity) due to their chemically stable intermetallic structures.

19.
Small ; 15(12): e1805474, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30786153

RESUMEN

Developing an efficient electrocatalyst for the hydrogen evolution reaction (HER) working in both acidic and alkaline solutions is highly desirable, but still remains challenging. Here, Ptx Ni ultrathin nanowires (NWs) with tunable compositions (x = 1.42, 3.21, 5.67) are in situ grown on MXenes (Ti3 C2 nanosheets), serving as electrocatalysts toward HER. Such Ptx Ni@Ti3 C2 electrocatalysts exhibit excellent HER performance in both acidic and alkaline solutions, with the Pt3.21 Ni@Ti3 C2 being the best one. Specifically, Pt3.21 Ni@Ti3 C2 achieves record-breaking performance in terms of lowest overpotential (18.55 mV) and smallest Tafel slope (13.37 mV dec-1 ) for HER in acidic media to date. Theory calculations and X-ray photoelectron spectroscopy analyses demonstrate that the coupling of MXenes with the NWs not only approaches the Gibbs free energy for hydrogen adsorption close to zero through the electron transfer between them in acidic media, but also provides additional active sites for water dissociation in alkaline solution, both of them being beneficial to the HER performance.

20.
Nanoscale Adv ; 1(10): 3941-3947, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36132115

RESUMEN

Hydrolysis of ammonia borane (AB) is a safe and convenient means of H2 production when efficient catalysts are used. Here we report a facile one-pot solvothermal method to synthesize Rh/WO3-x hybrid nanowires. Ultra-small Rh nanoparticles with an average size of ∼1.7 nm were tightly anchored on WO3-x nanowires. Rh/WO3-x catalysts exhibited substantially enhanced activity for hydrolytic dehydrogenation of AB under both dark and visible light irradiation conditions relative to mixed Rh nanoparticles and WO3-x nanowires (Rh + WO3-x ), and Rh/C and WO3-x nanowires. X-ray photoelectron spectroscopy (XPS) analysis indicated that the synergistic effect between Rh nanoparticles and WO3-x nanowires was responsible for such an enhancement in activity. Specifically, Rh/WO3-x achieved the highest turnover frequency (TOF) with a value of 805.0 molH2 molRh -1 min-1 at room temperature under visible light irradiation. The H2 release rate as a function of reaction time exhibited a volcano plot under visible light irradiation, indicating that a self-activation process occurred in the hydrolytic dehydrogenation of AB due to additional oxygen vacancies arising from in situ reduction of WO3-x nanowires by AB, and thus an enhanced localized surface plasmon resonance (LSPR). Such a self-activation process was responsible for the enhanced catalytic activity under visible light irradiation relative to that under dark conditions, which was supported by the lower activation energy (45.2 vs. 50.5 kJ mol-1). In addition, Rh/WO3-x catalysts were relatively stable with only little loss in activity after five cycles due to the tight attachment between two components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...