Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Exp Ther Med ; 27(5): 222, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590579

RESUMEN

Colorectal cancer (CRC) is a deadly and aggressive type of cancer that has a high fatality rate. The expression levels of replication factor C subunit 3 (RFC3) and kinesin family member 14 (KIF14) have been reported to be increased in CRC. The current study aimed to explore the effects of RFC3 on the malignant behaviors of CRC cells and its possible underlying mechanism involving KIF14. RFC3 and KIF14 expression levels in CRC tissues were analyzed using TNMplot database and Gene Expression Profiling Interactive Analysis database bioinformatics tools. RFC3 and KIF14 levels in CRC cells were examined using reverse transcription-quantitative PCR and western blotting. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were performed to assess cell proliferation. Cell apoptosis was determined using flow cytometric analysis. Wound healing and Transwell assays were adopted for the evaluation of cell migration and invasion. Tube formation assay in human umbilical vein endothelial cells was used to measure angiogenesis. Western blotting analysis was performed to determine the expression of apoptosis-, migration- and angiogenesis-associated proteins. Additionally, bioinformatics tools predicted the co-expression and interaction of RFC3 and KIF14, which was verified by a co-immunoprecipitation assay. RFC3 displayed elevated expression in CRC tissues and cells, and depletion of RFC3 halted the proliferation, migration, invasion and angiogenesis, while increasing the apoptosis of CRC cells; this was accompanied by changes in the expression levels of related proteins. In addition, RFC3 bound to KIF14 and interference with RFC3 reduced KIF14 expression. Moreover, KIF14 upregulation reversed the effects of RFC3 depletion on the aggressive cellular behaviors in CRC. In conclusion, RFC3 might interact with KIF14 to function as a contributor to the malignant development of CRC.

2.
Angew Chem Int Ed Engl ; : e202406069, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630112

RESUMEN

The construction of C(sp3)-N bonds via direct N-centered radical addition with olefins under benign conditions is a desirable but challenging strategy. Herein, we describe an organo-photocatalytic approach to achieve anti-Markovnikov alkene hydroamidation with sulfonyl azides in a highly efficient manner under transition-metal-free and mild conditions. A broad range of substrates, including both activated and unactivated alkenes, are suitable for this protocol, providing a convenient and practical method to construct sulfonylamide derivatives. A synergistic experimental and computational mechanistic study suggests that the additive, Hantzsch ester (HE), might undergo a triplet-triplet energy transfer manner to achieve photosensitization by the organo-photocatalyst under visible light irradiation. Next, the resulted triplet excited state 3HE* could lead to a homolytic cleavage of C4-H bond, which triggers a straightforward H-atom transfer (HAT) style in converting sulfonyl azide to the corresponding key amidyl radical. Subsequently, the addition of the amidyl radical to alkene followed by HAT from p-toluenethiol could proceed to afford the desired anti-Markovnikov hydroamidation product. It is worth noting that mechanistic pathway bifurcation could be possible for this reaction. A feasible radical chain propagation mechanistic pathway is also proposed to rationalize the high efficiency of this reaction.

3.
Cell Transplant ; 33: 9636897241245796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629748

RESUMEN

Immunoregulation and indoleamine 2,3-dioxygenase 1 (IDO1) play pivotal roles in the rejection of allogeneic organ transplantation. This study aims to elucidate the immune-related functional mechanisms of exosomes (Exos) derived from bone marrow-derived mesenchymal stem cells (BMSCs) overexpressing IDO1 in the context of allogeneic heart transplantation (HTx) rejection. A rat model of allogeneic HTx was established. Exos were extracted after transfection with oe-IDO1 and oe-NC from rat BMSCs. Exos were administered via the caudal vein for treatment. The survival of rats was analyzed, and reverse transcription qualitative PCR (RT-qPCR) and immunohistochemistry (IHC) were employed to detect the expression of related genes. Histopathological examination was conducted using hematoxylin and eosin (HE) staining, and flow cytometry was utilized to analyze T-cell apoptosis. Proteomics and RNA-seq analyses were performed on Exos. The data were subjected to functional enrichment analysis using the R language. A protein interaction network was constructed using the STRING database, and miRWalk, TargetScan, and miRDB databases predicted the target genes, differentially expressed miRNAs, and transcription factors (TFs). Exos from BMSCs overexpressing IDO1 prolonged the survival time of rats undergoing allogeneic HTx. These Exos reduced inflammatory cell infiltration, mitigated myocardial damage, induced CD4 T-cell apoptosis, and alleviated transplantation rejection. The correlation between Exos from BMSCs overexpressing IDO1 and immune regulation was profound. Notably, 13 immune-related differential proteins (Anxa1, Anxa2, C3, Ctsb, Hp, Il1rap, Ntn1, Ptx3, Thbs1, Hspa1b, Vegfc, Dcn, and Ptpn11) and 10 significantly different miRNAs were identified. Finally, six key immune proteins related to IDO1 were identified through common enrichment pathways, including Thbs1, Dcn, Ptpn11, Hspa1b, Il1rap, and Vegfc. Thirteen TFs of IDO1-related key miRNAs were obtained, and a TF-miRNA-mRNA-proteins regulatory network was constructed. Exosome miRNA derived from BMSCs overexpressing IDO1 may influence T-cell activation and regulate HTx rejection by interacting with mRNA.


Asunto(s)
Exosomas , Trasplante de Células Madre Hematopoyéticas , MicroARNs , Ratas , Animales , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Rechazo de Injerto/genética , ARN Mensajero/metabolismo
4.
Transl Stroke Res ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602659

RESUMEN

The objective of this study is to conduct a systematic review and meta-analysis aimed at evaluating the efficacy and safety of flow-diverting devices (FDs) treatment for intracranial vertebral artery (VA) aneurysms. We searched PubMed, Web of Science, OVID, and Embase for English-language studies up to February 2024 and included clinical studies on FD treatment of intracranial VA aneurysms. Sensitivity analysis evaluated outcome stability. Of 2273 articles, 29 studies involving 541 aneurysms treated with FDs were included. Based on the Methodological Index for Non-Randomized Studies (MINORS), six were high-quality and 23 moderate quality. FD treatment showed a 95% rate of favorable clinical outcomes (95% CI, 89-99%), 81% (95% CI, 74-88%) complete aneurysmal occlusion, 4% (95% CI, 2-7%) ischemic complication incidence, 1% (95% CI, 0-3%) hemorrhagic complication incidence, 95% (95% CI, 87-100%) posterior inferior cerebellar artery (PICA) preservation, and 6% (95% CI, 3-10%) in-stent stenosis or occlusion across clinical and angiographic follow-up periods of 13.62 months (95% CI, 10.72-16.52) and 11.85 months (95% CI, 9.36-14.33), respectively. Subgroup analyses, based on a 12-month angiographic follow-up threshold, indicated no statistically significant differences in rates of complete aneurysm occlusion, PICA preservation, or in-stent stenosis or occlusion incidence (p > 0.05) between subgroups. Moreover, significant differences were observed in clinical and angiographic outcomes between ruptured and unruptured aneurysms, particularly in hemorrhagic complications (p < 0.05), without significant disparity in ischemic complications (p > 0.05). The results' stability was confirmed via sensitivity analysis. FDs treatment for VA aneurysms is efficacious and safe, offering high rates of positive clinical and angiographic outcomes with minimal complications, underscoring FDs' viability as a treatment option for VA aneurysms. The study was registered with PROSPERO (registration number: CRD42024499894).

5.
ASAIO J ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38587868

RESUMEN

No previous studies have reported the use of a percutaneous suture technique performed by bedside intensivists for site closure during decannulation without direct artery repair in venoarterial extracorporeal membrane oxygenation (VA-ECMO) cases. Thus, the objective of this study was to evaluate the safety and effectiveness of this alternative approach. This retrospective study included 26 consecutive patients who underwent percutaneous VA-ECMO decannulation at Maoming People's Hospital. Bedside percutaneous suture technique performed by intensivists facilitated cannula site closure. Primary outcome was successful closure without additional interventions. Secondary outcomes included procedural time, surgical conversion rate, complications (bleeding, vascular/wound complications, neuropathy, lymphocele), procedure-related death. Follow-up ultrasound were conducted within 6 months after discharge. All patients achieved successful site hemostasis with a median procedural time of 28 minutes. Procedure-related complications included minor bleeding (7.7%), acute lower limb ischemia (15.4%), venous thrombus (11.5%), minor arterial stenosis (7.7%), wound infection (4.2%), delayed healing (15.4%), and wound secondary suturing (6.3%). No procedure-related deaths occurred. Follow-up vascular ultrasound revealed two cases (7.7%) of minor arterial stenosis. The perivascular suture technique may offer intensivists a safe and effective alternative method for access site closure without direct artery suture during ECMO decannulation.

6.
ACS Appl Mater Interfaces ; 16(14): 18184-18193, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38556720

RESUMEN

We experimentally investigated the coalescence-induced droplet-particle jumping phenomenon on a submillimeter scale in symmetric and asymmetric particle arrangements with poly(methyl methacrylate) (PMMA) particles and stainless steel (SS) particles. Coalescence-induced droplet-particle jumping exhibited excellent capability and interesting behavior for both droplet jumping enhancement and particle transport. The particle increased the normalized droplet jumping velocity from 0.250 for no particle case to 0.315 and 0.320 for symmetric and asymmetric particle cases. Compared with similar-sized macrostructures fixed between droplets, better jumping performance with particles may be attributed to avoiding the work of adhesion during droplet-macrostructure separation. Besides, all particles always sunk at the bottom in the symmetric cases, while the stick mode for PMMA particles and sink, wander, and jet modes for SS particles appeared in the asymmetry cases. We revealed that the asymmetric particle arrangement induces an unbalanced surface tension force, which may provide a driving force in the vertical direction. Additionally, a small enough resistive force caused by hydrophobic particles is another necessary condition for the wonder and jet mode. Finally, we realized a significantly superior particle transport in the asymmetric SS particle cases with maximum particle height reaching ∼2.1 mm, ∼12.4 times the particle radius, the most significant vertical self-propelled transport distance currently.

7.
Environ Pollut ; 349: 123993, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636838

RESUMEN

Landfill is a huge pathogen reservoir and needs special attention. Herein, the distribution and spread risk of pathogen were assessed in excavated landfill scenario. The results show that landfill excavation will greatly increase the risk of environmental microbial contamination. The highest total concentration of culturable bacteria among landfill refuse, topsoil and plant leaves was found to be as high as 1010 CFU g-1. Total coliforms, Hemolytic bacteria, Staphylococcus aureus, Salmonella, Enterococci, and Fecal coliforms were detected in the landfill surrounding environment. Notably, pathogens were more likely to adhere to plant leaves, making it an important source of secondary pathogens. The culturable bacteria concentration in the air samples differed with the landfill zone with different operation status, and the highest culturable bacteria concentration was found in the excavated area of the landfill (3.3 × 104 CFU m-3), which was the main source of bioaerosol release. The distribution of bioaerosols in the downwind outside of the landfill showed a tendency of increasing and then decreasing, and the highest concentration of bioaerosols outside of the landfill (6.56 × 104 CFU m-3) was significantly higher than that in the excavated area of the landfill. The risk of respiratory inhalation was the main pathway leading to infection, whereas the HQin (population inhalation hazardous quotient) at 500 m downwind the excavation landfill was still higher than 1, indicating that the neighboring residents were exposed to airborne microbial pollutants. The results of the study provide evidence for bioaerosols control protective measures taken to reduce health risk from the excavated landfill.


Asunto(s)
Microbiología del Aire , Monitoreo del Ambiente , Instalaciones de Eliminación de Residuos , Bacterias/aislamiento & purificación , Eliminación de Residuos , Aerosoles/análisis , Microbiología del Suelo , Medición de Riesgo
8.
Chem Commun (Camb) ; 60(37): 4894-4897, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38623623

RESUMEN

An efficient method for the radical difunctionalization of aromatic alkynes has been developed, resulting in the synthesis of a range of valuable triarylethenes. This approach utilizes strategically designed aryldiazonium salts with tertiary alcohol substitution as bifunctional reagents, along with cost-effective cuprous chloride as a catalyst. The method demonstrates remarkable Z-selectivity and is capable of gram-scale preparation. Additionally, a novel spin-trapping reagent has been developed based on the synthesized product.

9.
J Ethnopharmacol ; 329: 118099, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38554853

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As a common chronic inflammatory skin disease, psoriasis is incompletely understood and brings a lot of distress to patients. The estrogen signaling pathway has been implicated in its pathogenesis, making it a potential therapeutic target. Si Cao Formula (SCF) has demonstrated promise in treating psoriasis clinically. However, its molecular mechanisms concerning psoriasis remain largely unexplored. AIM OF THE STUDY: To elucidate the underlying mechanisms of the action of SCF on psoriasis. MATERIALS AND METHODS: Active ingredients were identified by LC-MS/MS. After the treatment with SCF, the exploration of differentially expressed proteins (DEPs) were conducted using tandem mass tag (TMT)-based quantitative proteomics analysis. By GO/KEGG, WikiPathways and network pharmacology, core signaling pathway and protein targets were explored. Consequently, major signaling pathway and protein targets were validated by RT-qPCR, immunoblotting and immunofluorescence. Based on Lipinski's Rule of Five rules and molecular docking, 8 active compounds were identified that acted on the core targets. RESULTS: 41 compounds of SCF and 848 specific targets of these compounds were identified. There were 570 DEPs between IMQ (Imiquimod) and IMQ + SCF group, including 279 up-regulated and 304 down-regulated proteins. GO/KEGG, WikiPathways and network pharmacology revealed estrogen signaling pathway as the paramount pathways, through which SCF functioned on psoriasis. We further show novel ingredients formula of SCF contributes to estrogen signaling intervention, including liquiritin, parvisoflavone B, glycycoumarin, 8-prenylluteone, licochalcone A, licochalcone B, oxymatrine, and 13-Hydroxylupanine, where targeting MAP2K1, ILK, HDAC1 and PRKACA, respectively. Molecular docking proves that they have good binding properties. CONCLUSION: Our results provide an in-depth view of psoriasis pathogenesis and herbal intervention, which expands our understanding of the systemic pharmacology to reveal the multiple ingredients and multiple targets of SCF and focus on one pathway (estrogen signaling pathway) may be a novel therapeutic strategy for psoriasis treatment of herbal medicine.

10.
Carcinogenesis ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470063

RESUMEN

Previous studies have indicated that transmembrane protein 16A (TMEM16A) plays a crucial role in the pathogenesis and progression of various tumors by influencing multiple signaling pathways. However, the role of TMEM16A in regulating autophagy via the mammalian target of rapamycin (mTOR) pathway and its impact on the development of hypopharyngeal squamous cell carcinoma (HSCC) remain unclear. Immunohistochemistry and western blotting were used to assess the expression of TMEM16A in HSCC tissues and metastatic lymph nodes. Manipulation of TMEM16A expression levels was achieved in the FaDu cell line through overexpression or knockdown, followed by assessment of its biological effects using cell colony formation, wound healing, transwell, and invasion assays. Additionally, apoptosis and autophagy-related proteins, as well as autophagosome formation, were evaluated through western blotting, transmission electron microscopy, and immunofluorescence following TMEM16A knockdown or overexpression in FaDu cells. Our study revealed significantly elevated levels of TMEM16A in both HSCC tissues and metastatic lymph nodes compared to normal tissues. In vitro experiments demonstrated that silencing TMEM16A led to a notable suppression of HSCC cell proliferation, invasion, and migration. Furthermore, TMEM16A silencing effectively inhibited tumor growth in xenografted mice. Subsequent investigations indicated that knockdown of TMEM16A in HSCC cells could suppress mTOR activation, thereby triggering autophagic cell death by upregulating sequestosome-1 (SQSTM1/P62) and microtubule-associated protein light chain 3 II (LC3II). This study highlights the crucial role of TMEM16A in modulating autophagy in HSCC, suggesting its potential as a therapeutic target for the treatment of this malignancy.

11.
DNA Cell Biol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513058

RESUMEN

Numerous studies have shown that circular RNAs are associated with the occurrence and development of various cancers, but the biological functions and mechanisms of hsa_circ_0006847 (circASPHD1) in gastric cancer (GC) remain unclear. The expression of hsa_circ_0006847 in GC cell lines, tissue, and plasma from GC patients was assayed by quantitative real-time reverse transcription-polymerase chain reaction. Hsa_circ_0006847 expression in cells was downregulated or upregulated by transfected small interfering RNA (siRNA) or overexpression plasmid. The role of hsa_circ_0006847 in GC was investigated with Cell Counting Kit-8, EdU, Transwell, flow cytometry assays, and in a subcutaneous xenograft tumor model. In addition, the interaction of eukaryotic translation initiation factor 4A3 (EIF4A3) and hsa_circ_0006847 was determined with western blot, biotin-labeled RNA pull-down, and RNA immunoprecipitation assays. Co-immunoprecipitation and mass spectrometry were used to validate the combination of EIF4A3 and synaptopodin-2 (SYNPO2). The expression of hsa_circ_0006847 was decreased in GC tissues and cells and indicated poor survival and prognosis. Overexpression of hsa_circ_0006847 inhibited cell proliferation, migration, and invasion. Flow cytometry showed that upregulation of hsa_circ_0006847 resulted in promotion of apoptosis of GC cells and inhibited their progression through the G0/G1 phase. Downregulation of hsa_circ_0006847 expression had the opposite effects. Overexpression of hsa_circ_0006847 in subcutaneous tumor xenografts inhibited tumor growth. Mechanically, hsa_circ_0006847 promoted the binding of EIF4A3 to SYNPO2 by recruiting EIF4A3, which inhibited the growth of GC. The tumor suppressor activity of hsa_circ_0006847, inhibition of the occurrence and development of GC, was mediated by promotion of EIF4A3 and the binding of EIF4A3 to SYNPO2. The results support the study of hsa_circ_0006847 as a novel therapeutic target for the treatment of GC.

12.
Adv Sci (Weinh) ; 11(16): e2309022, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38348551

RESUMEN

Radical difunctionalization of aliphatic alkynes provides direct access to valuable multi-substituted alkenes, but achieving a high level of chemo- and stereo-control remains a formidable challenge. Herein a novel photoredox neutral alkyne di-functionalization is reported through functional group migration followed by a radical-polar crossover and energy transfer-enabled stereoconvergent isomerization of alkenes. In this sequence, a hydroxyalkyl and an aryl group are incorporated concomitantly into an alkyne, leading to diversely functionalized E-allyl alcohols. The scope of alkynes is noteworthy, and the reaction tolerates aliphatic alkynes containing hydrogen donating C─H bonds that are prone to intramolecular hydrogen atom transfer. The protocol features broad functional group compatibility, high product diversity, and exclusive chemo- and stereoselectivity, thus providing a practical strategy for the elusive radical di-functionalization of unactivated alkynes.

13.
Dig Dis Sci ; 69(4): 1200-1213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400886

RESUMEN

BACKGROUND: Circular RNAs (CircRNAs) play essential roles in cancer occurrence as regulatory RNAs. However, circRNA-mediated regulation of gastric cancer (GC) remains poorly understood. AIM: The purpose of this study was to investigate the molecular mechanism of circSLC22A23 (hsa_circ_0075504) underlying GC occurrence. METHODS: CircSLC22A23 levels were first quantified by quantitative real-time reverse transcription-polymerase chain reaction in GC cell lines, 80 paired GC tissues and adjacent normal tissues, and 27 pairs of plasma samples from preoperative and postoperative patients with GC. Then circSLC22A23 was knocked-down with short hairpin RNA to analyze its oncogenic effects on the proliferation, migration, and invasion of GC cells. Finally, circRNA-binding proteins and their downstream target genes were identified by RNA pulldown, mass spectrometry, RNA immunoprecipitation, quantitative real-time reverse transcription-polymerase chain reaction, and Western blot assays. RESULTS: CircSLC22A23 was found to be highly expressed in GC cells, GC tissues, and plasma from GC patients. Knockdown of circSLC22A23 inhibited GC cell proliferation, migration and invasion. RNA pulldown and RNA immunoprecipitation assays verified the interaction between circSLC22A23 and heterogeneous nuclear ribonucleoprotein U (HNRNPU). Knockdown of circSLC22A23 decreased HNRNPU protein levels. Moreover, rescue assays showed that the tumor suppressive effect of circSLC22A23 knockdown was reversed by HNRNPU overexpression. Finally, epidermal growth factor receptor (EGFR) was found to be one of the downstream target genes of HNRNPU that was up regulated by circSLC22A23. CONCLUSION: CircSLC22A23 regulated the transcription of EGFR through activation of HNRNPU in GC cells, suggesting that circSLC22A23 may serve as a potential therapeutic target for the treatment of GC.


Asunto(s)
MicroARNs , ARN Circular , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , MicroARNs/genética , ARN Circular/genética , ARN Circular/metabolismo , ARN Interferente Pequeño , Neoplasias Gástricas/patología , Transportadores de Anión Orgánico/genética
14.
Chem Sci ; 15(5): 1879-1884, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38303955

RESUMEN

Pyrroline derivatives are common in bioactive natural products and therapeutic agents. We report here a synthesis of pyrrolines and fused diaziridines by divergent radical cyclization of homoallylic diazirines, which can serve as an internal radical trap and a nitrogen source. This reaction proceeds by selective radical addition to C[double bond, length as m-dash]C or N[double bond, length as m-dash]N bonds followed by intramolecular cyclization. Frontier molecular orbital analysis provides a deep insight into the origin of the selectivity. The reaction demonstrates a new cyclization mode, broad functional group compatibility and high product diversity, and reveals a much broader chemical space for diazirine studies.

15.
Environ Sci Pollut Res Int ; 31(14): 21044-21056, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38381293

RESUMEN

Proper composting treatment of poultry manure waste is recommended before its use as a fertilizer. This involves many bioprocesses driven by microorganisms. Therefore, it is important to understand microbial mechanisms behind these bioprocesses in manure composting systems. Many efforts have been made to study the microbial community structure and diversity in these systems using high-throughput sequencing techniques. However, the dynamics of microbial interaction and functionality, especially for key microbial functional guilds, are not yet fully understood. To address these knowledge gaps, we collected samples from a 150-day industrial chicken manure composting system and performed the microbial network analysis based on the sequencing data. We found that the family Bacillaceae and genus Bacillus might play important roles in organic matter biodegradation at the mesophilic/thermophilic phases. Genera Virgibacillus, Gracilibacillus, Nocardiopsis, Novibacillus, and Bacillaceae_BM62 were identified as the key ones for humic acid synthesis at the mature phases. These findings improve our understanding about the fundamental mechanisms behind manure composting and can aid the development of microbial agents to promote manure composting performance.


Asunto(s)
Bacillaceae , Compostaje , Animales , Suelo , Estiércol , Pollos , Sustancias Húmicas
16.
Inhal Toxicol ; 36(1): 1-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38175690

RESUMEN

Background: Paraquat (PQ) plays an important role in agricultural production due to its highly effective herbicidal effect. However, it has led to multiple organ failure in those who have been poisoned, with damage most notable in the lungs and ultimately leading to death. Because of little research has been performed at the genetic level, and therefore, the specific genetic changes caused by PQ exposure are unclear.Methods: Paraquat poisoning model was constructed in Sprague Dawley (SD) rats, and SD rats were randomly divided into Control group, paraquat (PQ) poisoning group and Anthrahydroquinone-2,6-disulfonate (AH2QDS) treatment group. Then, the data was screened and quality controlled, compared with reference genes, optimized gene structure, enriched at the gene expression level, and finally, signal pathways with significantly different gene enrichment were screened.Results: This review reports on lung tissues from paraquat-intoxicated Sprague Dawley (SD) rats that were subjected to RNA-seq, the differentially expressed genes were mainly enriched in PI3K-AKT, cGMP-PKG, MAPK, Focal adhesion and other signaling pathways.Conclusion: The signaling pathways enriched with these differentially expressed genes are summarized, and the important mechanisms mediated through these pathways in acute lung injury during paraquat poisoning are outlined to identify important targets for AH2QDS treatment of acute lung injury due to paraquat exposure, information that will be used to support a subsequent in-depth study on the mechanism of PQ action.


Asunto(s)
Lesión Pulmonar Aguda , Paraquat , Ratas , Animales , Ratas Sprague-Dawley , Paraquat/toxicidad , RNA-Seq , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Pulmón , Transducción de Señal , Tecnología
17.
Angew Chem Int Ed Engl ; 63(3): e202317132, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38038249

RESUMEN

While the hydrogen atom abstraction (HAA) from C(sp3 )-H bond has been well explored, the radical-mediated chemo- and regio-selective functionalization of allenic C(sp2 )-H bond via direct HAA from C(sp2 )-H bond of allene remains an unsolved challenge in synthetic chemistry. This is primarily due to inherent challenges with addition of radical intermediates to allenes, regioselectivity of HAA process, instability of allenyl radical toward propargyl radical et al. Herein, we report a copper catalyzed allenic C(sp2 )-H cyanation of an array of tri- and di-substituted allenes with exceptional site-selectivity, while mono-substituted allene was successfully cyanated, albeit with a low yield. In the developed strategy, steric N-fluoro-N-alkylsulfonamide, serving as precursor of hydrogen atom abstractor, plays a crucial role in achieving the desired regioselectivity and avoiding addition of N-centered radical to allene.

18.
J Ethnopharmacol ; 323: 117662, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38160866

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is a chronic inflammation and relapsing disease that affected approximately 100 million individuals worldwide. In previous clinical study, it was observed that the topical application of Si Cao Formula (SCF) ameliorated psoriasis skin lesions and reduced the recurrence rate of patients over a period of three months. However, the precise mechanism remains unclear. AIM OF THE STUDY: The objective of this study was to assess the effectiveness and safety of SCF in patients diagnosed with psoriasis and explore the molecular mechanisms that contribute to SCF's therapeutic efficacy in psoriasis treatment. MATERIALS AND METHODS: A randomized, controlled, and pilot clinical study was performed. This study assessed 30 individuals diagnosed with mild to moderate plaque psoriasis. 15 of them underwent local SCF treatment, the others received calcipotriol intervention. The outcome measure focused on Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI), and recurrence rate. In addition, IMQ-induced psoriasis-like mice model were used to assess the impact of SCF on ameliorating epidermal hyperplasia, suppressing angiogenesis, and modulating immune response. Furthermore, we performed bioinformatics analysis on transcriptome data obtained from skin lesions of mice model. This analysis allowed us to identify the targets and signaling pathways associated with the action of SCF. Subsequently, we conducted experimental validation to confirm the core targets. RESULTS: Our clinical pilot study demonstrated that SCF could ameliorate skin lesions in psoriasis patients with comparable efficacy of calcipotriol in drop of PASI and DLQI scores. SCF exhibited a significantly reduced recurrence rate within 12 weeks (33.3%). Liquid Chromatography Mass Spectrometry (LC-MS) identified 41 active constituents of SCF (26 cations and 15 anions). Animal experiments showed SCF ameliorates the skin lesions of IMQ-induced psoriasis like mice model and suppresses epidermal hyperkeratosis and angiogenesis. There were 845 up-regulated and 764 down-regulated DEGs between IMQ and IMQ + SCF groups. GO analysis revealed that DEGs were linked to keratinization, keratinocyte differentiation, organic acid transport epidermal cell differentiation, and carboxylic acid transport interferon-gamma production. KEGG pathway analysis showed that SCF may play a vital part through IL-17 and JAK/STAT signaling pathway. In addition, SCF could reduce the number of positive cells expressing PCNA, CD31, pSTAT3, CD3, and F4/80 within the epidermis of psoriatic lesions, as well as the expression of Il-17a and Stat3 in IMQ-induced psoriasis mice. CONCLUSIONS: Our research suggests that SCF serves as a reliable and efficient local approach for preventing and treating psoriasis. The discovery of plausible molecular mechanisms and therapeutic targets associated with SCF may support its broad implementation in clinical settings.


Asunto(s)
Recurrencia Local de Neoplasia , Psoriasis , Humanos , Animales , Ratones , Proyectos Piloto , Imiquimod , Psoriasis/patología , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad , Piel/patología , Ratones Endogámicos BALB C
19.
Inorg Chem ; 62(51): 21379-21395, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38096360

RESUMEN

The synthesis and biological evaluation of stable 16-electron half-sandwich complexes have remained scarce. We herein present the different coordination modes (16-electron or 18-electron) between half-sandwich iridium(III) complexes and ruthenium(II) complexes derived from the same amine-imine ligands chelating hybrid sp3-N/sp2-N donors. The 16-electron iridium(III) and 18-electron ruthenium(II) complexes with different counteranions were obtained and identified by various techniques. The promising cytotoxicity of these complexes against A549 lung cancer cells, cisplatin-resistant A549/DPP cells, cervical carcinoma HeLa cells, and human hepatocellular liver carcinoma HepG2 cells was observed with IC50 values ranging from 5.4 to 16.3 µM. Moreover, these complexes showed a certain selectivity (selectivity index: 2.1-3.7) toward A549 cells and BEAS-2B normal cells. The variation of metal center, counteranion, 16/18-electron coordination mode, and ligand substituents showed little influence on the cytotoxicity and selectivity of these complexes. The mechanism of action study showed that these complexes could target mitochondria, induce the depolarization of the mitochondrial membrane, and promote the generation of intracellular reactive oxygen species (ROS). Further, the induction of cell apoptosis and the perturbation of the cell cycle in the G0/G1 phase were also observed for these complexes. Overall, it seems that the redox mechanism dominated the anticancer efficacy of these complexes.


Asunto(s)
Antineoplásicos , Carcinoma , Complejos de Coordinación , Rutenio , Humanos , Antineoplásicos/farmacología , Células HeLa , Iminas , Iridio/farmacología , Rutenio/farmacología , Complejos de Coordinación/farmacología , Aminas/farmacología , Ligandos , Electrones , Apoptosis , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo
20.
Org Lett ; 25(49): 8814-8818, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38054933

RESUMEN

This work demonstrates sulfonyl group-induced remote C(sp3)-N bond construction using a strategy of merging aryl radical-mediated halogen atom transfer and intramolecularly regioselective hydrogen atom transfer (HAT). A plethora of aliphatic sulfones, sulfonamides, and sulfonates are amenable and undergo regioselective C(sp3)-H amination by utilizing an iron salt at room temperature. This protocol involves iodine atom transfer, a HAT process enabled by an alkyl radical adjacent to a sulfonyl group, and amination mediated by an aryl diazonium salt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...