Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 563
Filtrar
1.
Neural Regen Res ; 20(3): 632-645, 2025 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886930

RESUMEN

Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.

2.
Int Immunopharmacol ; 141: 112944, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153308

RESUMEN

BACKGROUND: Sudden sensorineural hearing loss (SSNHL) is characterized by rapid, unexplained loss of hearing within a 72-hour period and exhibits a high incidence globally. Despite this, the outcomes of therapeutic interventions remain largely unpredictable, especially for those with profound hearing loss. Extracellular vesicles (EVs), nano-sized entities containing biological materials, are implicated in the development of numerous diseases. The specific relationship between EVs and both the severity and treatment effectiveness of SSNHL, however, is not well understood. METHODS: This study involved the analysis of medical records from the Department of Otolaryngology (September 1, 2020 - December 31, 2022) of patients diagnosed with SSNHL according to the 2015 Guidelines for Diagnosis and Treatment of Sudden Deafness in China. Peripheral blood samples from patients with various types of SSNHL before and after treatment were collected, alongside samples from healthy volunteers serving as controls. Plasma EVs were isolated using gel rejection chromatography and analyzed for concentration, marker presence, and morphology using Nanosight, Western blot, and transmission electron microscopy (TEM), respectively. Proteomics and miRNA assessments were conducted to identify differentially expressed proteins and miRNAs in the plasma EVs of SSNHL patients and healthy volunteers. Key proteins were further validated through Western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was utilized to determine the levels of complement C3 in plasma EVs, and correlation analyses were performed with audiological data pre- and post-treatment. RESULTS: Plasma from SSNHL patients of varying types was collected and their EVs were successfully isolated and characterized. Proteomic analysis revealed that complement C3 levels in the plasma EVs of patients with profound SSNHL were significantly higher compared to healthy controls. Differential expression of miRNAs in plasma EVs and their related functions were also identified. The study found that the level of complement C3 in plasma EVs, but not the total plasma complement C3, positively correlated with the severity of SSNHL in patients exhibiting positive therapeutic responses, particularly in those with initially lower levels of EV-associated complement C3. After treatment, complement C3 level was decreased in patients with initially higher levels of EV-associated complement C3. No significant correlation was observed between changes in plasma EV-derived complement C3 levels and the degree of hearing loss in either responders or non-responders among patients with profound SSNHL. CONCLUSION: Differential profiles of proteins and miRNAs were identified in patients with profound SSNHL. Notably, plasma EV-derived complement C3 was linked to both the severity and early treatment effectiveness of patients with profound SSNHL.

3.
Emerg Microbes Infect ; 13(1): 2389095, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39101691

RESUMEN

Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Disulfuros , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Anticuerpos Antivirales/inmunología , Ratones , Disulfuros/química , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Anticuerpos Neutralizantes/inmunología , Femenino , Protección Cruzada/inmunología , Reacciones Cruzadas , Humanos , Gripe Humana/prevención & control , Gripe Humana/inmunología , Gripe Humana/virología , Epítopos/inmunología , Epítopos/genética , Epítopos/química , Multimerización de Proteína , Virus de la Influenza B/inmunología , Virus de la Influenza B/genética , Virus de la Influenza B/química
4.
Neural Regen Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39104167

RESUMEN

Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage. However, during minimally invasive surgery, recombinant tissue plasminogen activator may come into contact with brain tissue. Therefore, a thorough assessment of its safety is required. In this study, we established a mouse model of intracerebral hemorrhage induced by type VII collagenase. We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage, reduced pathological damage, and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma. In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin, the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis, autophagy, and endoplasmic reticulum stress. Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons. Moreover, the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis, autophagy, and endoplasmic reticulum stress. Furthermore, to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects, various inhibitors were used to target distinct domains. It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway. These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage, possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.

5.
Sci Total Environ ; 948: 174750, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39009153

RESUMEN

Blue and Green Infrastructures (BGIs) are natural or semi-natural systems that are considered an efficient solution to enhance stormwater management. To assess the performance of BGIs in mitigating floods and droughts in an urban area, a water balance model was developed in this study to simulate runoff formation and propagation. The developed model features fine spatial and temporal resolutions and flexibly integrates BGIs. Combining the conceptual single reservoir approach and the empirical continuous Soil Conservation Service Curve Number (SCS-CN) method, the model achieves computational efficiency, enabling long-term simulations that capture both short-term extreme events and long-term water balance. Its high transferability allows for easy incorporation of local datasets, making it adaptable to various urban contexts. Applied on a university campus located in Belgium, the model was used to simulate the water balance components of feasible BGIs for the study area, which were green roofs, permeable surfaces and rainwater tanks. Scenario analysis of both single BGI and combined BGI implementations was conducted, and all BGI scenarios were evaluated based on peak flow and runoff volume reduction and water balance analysis. Results demonstrate that the implementation of a combination of several BGIs with different functions is an effective solution for both flood control and drought mitigation, as these solutions can significantly reduce runoff flows, increase infiltration and provide considerable rainwater reuse.

6.
Heliyon ; 10(12): e32670, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39027453

RESUMEN

To prevent convulsions and falls of patients in the absence of medical staff, it is crucial to monitor their physical condition in hospital wards. However, several unresolved challenges in human joint recognition remain, such as object occlusion, human self-occlusion and complex backgrounds, resulting in difficulties in its practical application. In this paper, a multi-LiDAR system is proposed to obtain a multi-view human body point cloud. An improved V2V-Posenet model was introduced to detect the actual position of the human joint. In this system, each point cloud was spliced into a full point cloud and voxelized into the model. We also used a random voxel zero setting for data enhancement, constraining the relative length between human joints into a loss function and three-dimensional Gaussian filtering in a heat map for model learning. The improved model exhibited excellent performance in detecting human joints in hospital wards. The experimental results showed that the improved model achieved 91.6 % mean average precision, compared to 80.1 % for the original model and 77.4 % for the comparison algorithm A2J-Posenet. The speed of the improved model meets the requirements for real-time target detection.

7.
World J Clin Cases ; 12(20): 4154-4165, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39015913

RESUMEN

BACKGROUND: Accurate condition assessment is critical for improving the prognosis of neonatal respiratory distress syndrome (RDS), but current assessment methods for RDS pose a cumulative risk of harm to neonates. Thus, a less harmful method for assessing the health of neonates with RDS is needed. AIM: To analyze the relationships between pulmonary ultrasonography and respiratory distress scores, oxygenation index, and chest X-ray grade of neonatal RDS to identify predictors of neonatal RDS severity. METHODS: This retrospective study analyzed the medical information of 73 neonates with RDS admitted to the neonatal intensive care unit of Liupanshui Maternal and Child Care Service Center between April and December 2022. The pulmonary ultrasonography score, respiratory distress score, oxygenation index, and chest X-ray grade of each newborn before and after treatment were collected. Spearman correlation analysis was performed to determine the relationships among these values and neonatal RDS severity. RESULTS: The pulmonary ultrasonography score, respiratory distress score, oxygenation index, and chest X-ray RDS grade of the neonates were significantly lower after treatment than before treatment (P < 0.05). Spearman correlation analysis showed that before and after treatment, the pulmonary ultrasonography score of neonates with RDS was positively correlated with the respiratory distress score, oxygenation index, and chest X-ray grade (ρ = 0.429-0.859, P < 0.05). Receiver operating characteristic curve analysis indicated that pulmonary ultrasonography screening effectively predicted the severity of neonatal RDS (area under the curve = 0.805-1.000, P < 0.05). CONCLUSION: The pulmonary ultrasonography score was significantly associated with the neonatal RDS score, oxygenation index, and chest X-ray grade. The pulmonary ultrasonography score was an effective predictor of neonatal RDS severity.

8.
Virulence ; 15(1): 2367649, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38898809

RESUMEN

Pseudomonas aeruginosa is one of the leading causes of nosocomial infections worldwide and has emerged as a serious public health threat, due in large part to its multiple virulence factors and remarkable resistance capabilities. Stk1, a eukaryotic-type Ser/Thr protein kinase, has been shown in our previous work to be involved in the regulation of several signalling pathways and biological processes. Here, we demonstrate that deletion of stk1 leads to alterations in several virulence- and resistance-related physiological functions, including reduced pyocyanin and pyoverdine production, attenuated twitching motility, and enhanced biofilm production, extracellular polysaccharide secretion, and antibiotic resistance. Moreover, we identified AlgR, an important transcriptional regulator, as a substrate for Stk1, with its phosphorylation at the Ser143 site catalysed by Stk1. Intriguingly, both the deletion of stk1 and the mutation of Ser143 of AlgR to Ala result in similar changes in the above-mentioned physiological functions. Furthermore, assays of algR expression in these strains suggest that changes in the phosphorylation state of AlgR, rather than its expression level, underlie changes in these physiological functions. These findings uncover Stk1-mediated phosphorylation of AlgR as an important mechanism for regulating virulence and resistance in P. aeruginosa.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Proteínas Serina-Treonina Quinasas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/enzimología , Fosforilación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Biopelículas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Farmacorresistencia Bacteriana/genética , Infecciones por Pseudomonas/microbiología , Transactivadores
9.
Org Lett ; 26(27): 5736-5740, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38935932

RESUMEN

Gold-catalyzed dimerization of terminal alkynes is achieved under mild reaction conditions and in excellent yields. In addition to homodimerizations, heterodimerizations between TBS acetylene and a range of terminal alkynes were realized using the syringe pump technique. The reaction tolerates various functional groups. The rate acceleration experienced in the reactions is enabled by metal-ligand cooperation. A binaphthyl-2-ylphosphine ligand featuring a 3'-diisopropylphosphoryl group plays a pivotal role in facilitating alkyne attack by accommodating and/or deprotonating its terminal proton.

10.
J Environ Manage ; 365: 121613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944964

RESUMEN

Composting is a biological reaction caused by microorganisms. Composting efficiency can be adequately increased by adding biochar and/or by inoculating with exogenous microorganisms. In this study, we looked at four methods for dewatered sludge waste (DSW) and wheat straw (WS) aerobic co-composting: T1 (no additive), T2 (5% biochar), T3 (5% of a newly isolated strain, Xenophilus azovorans (XPA)), and T4 (5% of biochar-immobilized XPA (BCI-XPA)). Throughout the course of the 42-day composting period, we looked into the carbon dynamics, humification, microbial community succession, and modifications to the driving pathways. Compared to T1 and T2, the addition of XPA (T3) and BCI-XPA (T4) extended the thermophilic phase of composting without negatively affecting compost maturation. Notably, T4 exhibited a higher seed germination index (132.14%). Different from T1 and T2 treatments, T3 and T4 treatments increased CO2 and CH4 emissions in the composting process, in which the cumulative CO2 emissions increased by 18.61-47.16%, and T3 and T4 treatments also promoted the formation of humic acid. Moreover, T4 treatment with BCI-XPA addition showed relatively higher activities of urease, polyphenol oxidase, and laccase, as well as a higher diversity of microorganisms compared to other processes. The Functional Annotation of Prokaryotic Taxa (FAPROTAX) analysis showed that microorganisms involved in the carbon cycle dominated the entire composting process in all treatments, with chemoheterotrophy and aerobic chemoheterotrophy being the main pathways of organic materials degradation. Moreover, the presence of XPA accelerated the breakdown of organic materials by catabolism of aromatic compounds and intracellular parasite pathways. On the other hand, the xylanolysis pathway was aided in the conversion of organic materials to dissolved organics by the addition of BCI-XPA. These findings indicate that XPA and BCI-XPA have potential as additives to improve the efficiency of dewatered sludge and wheat straw co-composting.


Asunto(s)
Carbono , Compostaje , Aguas del Alcantarillado , Triticum , Aguas del Alcantarillado/microbiología , Carbono/metabolismo , Sustancias Húmicas , Carbón Orgánico
11.
Environ Sci Pollut Res Int ; 31(30): 43323-43338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900406

RESUMEN

Developing multifunctional engineered adsorbents is an effective strategy for decontaminating the environment from various pollutants. In this study, a polyfunctionalized carbon-framework composite, MSC-CFM, was synthesized. The composite comprises an aromatic carbon framework enriched with various functional groups, including magnetic nanoparticles, hydroxyl, and amino groups. MSC-CFM was used to decontaminate Cr(VI) and polycyclic aromatic nitrides (p-dimethylaminoazobenzene sulfonate (DAS) and diphenyl-4, 4 '-di [sodium (azo-2 -) -1-amino-naphthalene-4-sulfonate] (DANS)) from acidic wastewater. The adsorption capacities of MSC-CFM for Cr(VI), DAS and DANS, quantified using the Langmuir isotherm model, were 161.28, 310.83, and 1566.09 mg/g, respectively. Cr(VI) and PAHs (DAS and DANS) were monolayer adsorbed controlled by chemisorption. MSC-CFM could maintain good adsorption efficiency after up to 6 adsorption and desorption cycles. The presence of polycyclic aromatic nitrides promoted the adsorption of Cr(VI) in the Cr(VI)-DAS/DANS binary systems. Removal of pollutants by MSC-CFM involved a variety of unreported reaction mechanisms, such as electrostatic attraction, redox reaction, anion exchange, intermolecular hydrogen bonding, complexation reaction, π-π interaction, and anion-π interaction. MSC-CFM, enriched with a variety of functional groups, is a promising new material for environmental protection. It has good potential for practical application in treating polluted wastewater.


Asunto(s)
Carbono , Cromo , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Adsorción , Cromo/química , Carbono/química , Hidrocarburos Policíclicos Aromáticos/química
12.
Cell Rep ; 43(6): 114366, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38879877

RESUMEN

p53 regulates multiple signaling pathways and maintains cell homeostasis under conditions of DNA damage and oxidative stress. Although USP7 has been shown to promote p53 stability via deubiquitination, the USP7-p53 activation mechanism has remained unclear. Here, we propose that DNA damage induces reactive oxygen species (ROS) production and activates ATM-CHK2, and CHK2 then phosphorylates USP7 at S168 and T231. USP7 phosphorylation is essential for its deubiquitination activity toward p53. USP7 also deubiquitinates CHK2 at K119 and K131, increasing CHK2 stability and creating a positive feedback loop between CHK2 and USP7. Compared to peri-tumor tissues, thyroid cancer and colon cancer tissues show higher CHK2 and phosphorylated USP7 (S168, T231) levels, and these levels are positively correlated. Collectively, our results uncover a phosphorylation-deubiquitination positive feedback loop involving the CHK2-USP7 axis that supports the stabilization of p53 and the maintenance of cell homeostasis.


Asunto(s)
Quinasa de Punto de Control 2 , Estrés Oxidativo , Proteína p53 Supresora de Tumor , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación , Quinasa de Punto de Control 2/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Fosforilación , Retroalimentación Fisiológica , Daño del ADN , Especies Reactivas de Oxígeno/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Transducción de Señal , Línea Celular Tumoral , Estabilidad Proteica , Animales
13.
Small ; : e2402146, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888130

RESUMEN

Acute lung injury (ALI) is the pathophysiological precursor of acute respiratory distress syndrome. It is characterized by increased oxidative stress and exaggerated inflammatory response that disrupts redox reactions and immune homeostasis in the lungs, thereby posing significant clinical challenges. In this study, an internally functionalized thioether-enriched dendrimer Sr-G4-PEG is developed, to scavenge both proinflammatory cytokines and reactive oxygen species (ROS) and restore homeostasis during ALI treatment. The dendrimers are synthesized using an efficient and orthogonal thiol-ene "click" chemistry approach that involves incorporating thioether moieties within the dendritic architectures to neutralize the ROS. The ROS scavenging of Sr-G4-PEG manifests in its capacity to sequester proinflammatory cytokines. The synergistic effects of scavenging ROS and sequestering inflammatory cytokines by Sr-G4-PEG contribute to redox remodeling and immune homeostasis, along with the modulation of the NLRP3-pyroptosis pathway. Treatment with Sr-G4-PEG enhances the therapeutic efficacy of ALIs by alleviating alveolar bleeding, reducing inflammatory cell infiltration, and suppressing the release of inflammatory cytokines. These results suggest that Sr-G4-PEG is a potent nanotechnological candidate for remodeling redox and immune homeostasis in the treatment of ALIs, demonstrating the great potential of dendrimer-based nanomedicine for the treatment of respiratory pathologies.

14.
Acta Pharmacol Sin ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871922

RESUMEN

Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38918324

RESUMEN

Renal ischemia-reperfusion injury (IRI) frequently occurs following kidney transplantation, and exosomes derived from umbilical cord mesenchymal stem cells (WJ-MSC-Exos) have shown promise in treating IRI in transplanted kidneys. Our study delved into the potential mechanism of WJ-MSC-Exos in ameliorating IRI in transplanted kidneys, revealing that miR-19b is abundantly present in WJ-MSC-Exos. Both in vivo and in vitro experiments demonstrated that the absence of miR-19b abolished the protective effects of WJ-MSC-Exos against renal IRI. Mechanistically, miR-19b suppressed glycogen synthase kinase-3ß (GSK3ß) expression, thereby stabilizing PDXK protein through direct binding. Treatment with WJ-MSC-Exos led to reduced PDXK levels and enhanced pyridoxine accumulation, ultimately mitigating IRI in transplanted kidneys and I/R-induced HK2 cell apoptosis. These findings elucidate the underlying mechanism of WJ-MSC-Exos in alleviating IRI in transplanted kidneys, unveiling novel therapeutic targets for post-kidney transplantation IRI and providing a solid theoretical foundation for the clinical application of WJ-MSC-Exos in IRI treatment post-transplantation.

16.
Sci Total Environ ; 944: 173888, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866143

RESUMEN

The widespread use of chemical disinfectants and antibiotics poses a major threat to food safety and human health. However, the mechanisms of co-transmission of antimicrobial resistance genes (ARGs) and biocides and metal resistance genes (BMRGs) of foodborne pathogens in the food chain is still unclear. This study isolated 343 E. coli strains from animal-derived foods in Beijing and incorporated online data of human-derived E. coli strains from NCBI. Our results demonstrated a relatively uniform distribution of strains from various regions in Beijing, indicating a lack of region-specific clustering. Additionally, predominant sequence types varied between food- and human-derived strains, suggesting a preference for different hosts and environments. Phenotypic association analysis showed that the chlorine disinfectants peroxides had a significant positive correlation with tetracyclines. Many more ARGs and BMRGs were enriched in human-associated E. coli compared with those in chicken- and pork-origin. The quaternary ammonium compounds (QACs) resistance gene qacEΔ1 had a strong correlation with aminoglycoside resistance gene aadA5, folate pathway antagonist resistance gene dfrA17, sul1 and macrolide resistance gene mph(A). The correlation results indicated a significant association between the copper resistance gene cluster pco and the silver resistance gene cluster sil. Coexistence of many resistance genes was observed within the qacEΔ1 gene structure, with qacEΔ1-sul1 being the most common combination. Our findings demonstrated that the epidemiological spread of resistance is affected by a combination of heavy metals, disinfectants and antibiotic use, suggesting that the prevention and control strategies of antimicrobial resistance need to be multifaceted and comprehensive.


Asunto(s)
Antibacterianos , Desinfectantes , Escherichia coli , Desinfectantes/farmacología , Antibacterianos/farmacología , Humanos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Beijing , Farmacorresistencia Bacteriana/genética , Microbiología de Alimentos , Animales , China
17.
Environ Sci Technol ; 58(21): 9292-9302, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752544

RESUMEN

The fate of sulfonamide antibiotics in farmlands is crucial for food and ecological safety, yet it remains unclear. We used [phenyl-U-14C]-labeled sulfamethoxazole (14C-SMX) to quantitatively investigate the fate of SMX in a soil-maize system for 60 days, based on a six-pool fate model. Formation of nonextractable residues (NERs) was the predominant fate for SMX in unplanted soil, accompanied by minor mineralization. Notably, maize plants significantly increased SMX dissipation (kinetic constant kd = 0.30 day-1 vs 0.17 day-1), while substantially reducing the NER formation (92% vs 58% of initially applied SMX) and accumulating SMX (40%, mostly bound to roots). Significant NERs (maximal 29-42%) were formed via physicochemical entrapment (determined using silylation), which could partially be released and taken up by maize plants. The NERs consisted of a considerable amount of SMX formed via entrapment (1-8%) and alkali-hydrolyzable covalent bonds (2-12%, possibly amide linkage). Six and 10 transformation products were quantified in soil extracts and NERs, respectively, including products of hydroxyl substitution, deamination, and N-acylation, among which N-lactylated SMX was found for the first time. Our findings reveal the composition and instability of SMX-derived NERs in the soil-plant system and underscore the need to study the long-term impacts of reversible NERs.


Asunto(s)
Contaminantes del Suelo , Suelo , Sulfametoxazol , Zea mays , Suelo/química , Granjas
18.
Mol Neurobiol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743209

RESUMEN

Intracerebral hemorrhage (ICH) is a subtype of stroke with the highest fatality and disability rate. Up to now, commonly used first-line therapies have limited value in improving prognosis. Angiogenesis is essential to neurological recovery after ICH. Recent studies have shown that microRNA-451(miR-451) plays an important role in angiogenesis by regulating the function of vascular endothelial cells. We found miR-451 was significantly decreased in the peripheral blood of ICH patients in the acute stage. Based on the clinical findings, we conducted this study to investigate the potential regulatory effect of miR-451 on angiogenesis after ICH. The expression of miR-451 in ICH mouse model and in a hemin toxicity model of human brain microvascular endothelial cells (hBMECs) was decreased the same as in ICH patients. MiR-451 negatively regulated the proliferation, migration, and tube formation of hBMECs in vitro. MiR-451 negatively regulated the microvessel density in the perihematoma tissue and affected neural functional recovery of ICH mouse model. Knockdown of miR-451 could recovered tight junction and protect the integrity of blood-brain barrier after ICH. Based on bioinformatic programs, macrophage migration inhibitory factor (MIF) was predicted to be the target gene and identified to be regulated by miR-451 inhibiting the protein translation. And p-AKT and p-ERK were verified to be downstream of MIF in angiogenesis. These results all suggest that miR-451 will be a potential target for regulating angiogenesis in ICH.

19.
Nat Commun ; 15(1): 3218, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622151

RESUMEN

Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.


Asunto(s)
Carbono , Carbón Orgánico , Grafito , Biomasa , Hollín
20.
J Multidiscip Healthc ; 17: 1541-1548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623394

RESUMEN

Objective: This study explores the correlation between coping style, quality of life, and illness uncertainty in the family caregivers of patients with liver cancer. Methods: Employing convenience sampling, 210 family caregivers of patients with liver cancer who met the admission criteria were selected from a grade A infectious disease hospital in Beijing between January and December 2022. A cross-sectional survey was conducted using the Simplified Coping Style Questionnaire, Caregiver Quality of Life, and the Mishel Uncertainty in Illness Scale for Family Members. This study analysed the correlations between coping styles, quality of life, and illness uncertainty in these caregivers. Results: The study found that family caregivers of patients with liver cancer had average scores for illness uncertainty (83.44 ± 11.86), coping style (33.19 ± 9.79; both positive [23.02 ± 6.81] and negative [10.17 ± 5.05]), and quality of life (169.53 ± 32.46). A negative association was observed between illness uncertainty in these caregivers and positive coping style (r = -0.207, p = 0.003), physical status (r = -0.182, p = 0.008), psychological status (r = -0.200, p = 0.004), and social adaptation (r = -0.229, p = 0.001). Conclusion: The study concludes that illness uncertainty in family caregivers of patients with liver cancer is at a moderate level. Furthermore, there is a notable correlation between illness uncertainty, coping style, and quality of life in these caregivers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA