Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Methods ; 20(12): 1855-1858, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38057510
2.
Cell Prolif ; 56(5): e13492, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37199067

RESUMEN

The interactions between extra-embryonic tissues and embryonic tissues are crucial to ensure proper early embryo development. However, the understanding of the crosstalk between the embryonic tissues and extra-embryonic tissues is lacking, mainly due to ethical restrictions, difficulties in obtaining natural human embryos, and lack of appropriate in vitro models. Here by aggregating human embryonic stem cells (hESCs) with human trophoblast stem cells (hTSCs), we revealed the hESCs robustly self-organized into a unique asymmetric structure which the primitive streak (PS) like cells exclusively distributed at the distal end to the TS-compartment, and morphologically flattened cells, presumed to be the extra-embryonic mesoderm cells (EXMC) like cells, were induced at the proximal end to hTSCs. Our study revealed two potential roles of extra-embryonic trophectoderm in regulating the proper PS formation during gastrulation and EXMCs induction from the human epiblast.


Asunto(s)
Gástrula , Trofoblastos , Humanos , Gástrula/fisiología , Estratos Germinativos , Diferenciación Celular , Células Madre
3.
Cell ; 186(10): 2078-2091.e18, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172562

RESUMEN

Neural tube (NT) defects arise from abnormal neurulation and result in the most common birth defects worldwide. Yet, mechanisms of primate neurulation remain largely unknown due to prohibitions on human embryo research and limitations of available model systems. Here, we establish a three-dimensional (3D) prolonged in vitro culture (pIVC) system supporting cynomolgus monkey embryo development from 7 to 25 days post-fertilization. Through single-cell multi-omics analyses, we demonstrate that pIVC embryos form three germ layers, including primordial germ cells, and establish proper DNA methylation and chromatin accessibility through advanced gastrulation stages. In addition, pIVC embryo immunofluorescence confirms neural crest formation, NT closure, and neural progenitor regionalization. Finally, we demonstrate that the transcriptional profiles and morphogenetics of pIVC embryos resemble key features of similarly staged in vivo cynomolgus and human embryos. This work therefore describes a system to study non-human primate embryogenesis through advanced gastrulation and early neurulation.


Asunto(s)
Defectos del Tubo Neural , Neurulación , Técnicas de Cultivo de Tejidos , Animales , Humanos , Blastocisto , Embrión de Mamíferos , Desarrollo Embrionario , Macaca fascicularis , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Técnicas de Cultivo de Tejidos/métodos
4.
Dev Cell ; 58(9): 806-821.e7, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37054708

RESUMEN

Supporting healthy pregnancy outcomes requires a comprehensive understanding of the cellular hierarchy and underlying molecular mechanisms in the primate placenta during gestation. Here, we present a single-cell transcriptome-wide view of the cynomolgus macaque placenta throughout gestation. Bioinformatics analyses and multiple validation experiments suggested that placental trophoblast cells exhibited stage-specific differences across gestation. Interactions between trophoblast cells and decidual cells also showed gestational stage-dependent differences. The trajectories of the villous core cells indicated that placental mesenchymal cells were derived from extraembryonic mesoderm (ExE.Meso) 1, whereas placental Hofbauer cells, erythrocytes, and endothelial cells were derived from ExE.Meso2. Comparative analyses of human and macaque placentas uncovered conserved features of placentation across species, and the discrepancies of extravillous trophoblast cells (EVTs) between human and macaque correlated to their differences in invasion patterns and maternal-fetal interactions. Our study provides a groundwork for elucidating the cellular basis of primate placentation.


Asunto(s)
Placenta , Transcriptoma , Animales , Embarazo , Femenino , Humanos , Transcriptoma/genética , Células Endoteliales , Placentación , Primates , Macaca
5.
Nature ; 612(7941): 732-738, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517595

RESUMEN

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células Madre
6.
Front Cell Dev Biol ; 10: 835445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784461

RESUMEN

Implantation of the human blastocyst is a milestone event in embryonic development. The trophoblast is the first cell lineage to differentiate during implantation. Failures in trophoblast differentiation during implantation are correlated to the defects of pregnancy and embryonic growth. However, many gaps remain in the knowledge of human embryonic development, especially regarding trophoblast morphogenesis and function. Herein, we performed single-cell RNA sequencing (scRNA-seq) analysis on human post-implantation embryos cultured in vitro. A hierarchical model was established, which was characterized by the sequential development of two primitive cytotrophoblast cell (pCTB) subtypes, two primitive syncytiotrophoblast subtypes, and migrative trophoblast cells (MTB) after the trophectoderm . Further analysis characterized cytoskeleton transition of trophoblast cells and morphogenesis, such as irregular nuclei, cell cycle arrest, and cellular aging during implantation. Moreover, we found syncytialization of hTSCs could mimic the morphogenesis, serving as a powerful tool for further understanding of the mechanism during the implantation stage of pregnancy. Our work allows for the reconstruction of trophoblast cell transcriptional transition and morphogenesis during implantation and provides a valuable resource to study pathologies in early pregnancy, such as recurrent implantation failure.

7.
Cytotechnology ; 71(2): 539-551, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30815768

RESUMEN

Amniotic epithelial cells (AECs), isolated from placenta, have epithelial cells and stem cells characteristics. Most of the previous studies focused on the biological characteristics of human amniotic epithelial cells, which demonstrated amniotic epithelial cells not only had low immunogenicity and potent potential to differentiate into three germ layers, but also could secrete various immunomodulatory factors. However, compared to study on human amniotic epithelial cells, few studies have been done on other animals. In this study, sheep amniotic epithelial cells were successfully isolated and their surface makers were accessed by immunofluorescence assay, and found that AECs were expressed Oct4 and Sox2, which were necessary for maintaining the undifferentiated state of pluripotent stem cells. Based on cloning efficiency and growth kinetics assay, AECs were found to possess self-renewal capacity and the growth curve was S-shaped. In addition, AECs could be induced into adipocytes, osteoblasts and chondrocytes in vitro, showing they had multi-differential ability. Reverse transcription-polymerase chain reaction results showed that AECs expressed CD29, CD44, CD90 and CK19, and didn't expressed CD34, CD45 and the telomerase gene (TERT). Little change in chromosome number was observed in AEC cultures for up to at least the first ten passages. In summary, this study results revealed that sheep AECs possessed more advantages for cell therapy and might play a key role in cell therapy and regenerative medicine in the future.

8.
Poult Sci ; 97(9): 3236-3247, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790972

RESUMEN

The skin is a natural target of stem cell research because of its large size and easy accessibility. Cutaneous mesenchymal stem cells have shown to be a promising source of various adult stem cell or progenitor cell populations, which provide an important source of stem cell-based investigation. Nowadays, much work has been done on dermal-derived mesenchymal stem cells (DMSCs) from humans, mice, sheep, and other mammals, but the literature on avian species has been rarely reported. As an animal model, the goose is an endemic species abounding in dermal tissues which is important in the global economy. In this study, we isolated and established the mesenchymal stem cell line from dermis tissue of goose, which were subcultured to passage 21 in vitro without loss of their functional integrity in terms of morphology, renewal capacity, and presence of mesenchymal stem cell markers. Cryopreservation and resuscitation were also observed in different passages. To investigate the biological characteristics of goose DMSCs, immunofluorescence, reverse transcription-polymerase chain reaction, and flow cytometry were used to detect the characteristic surface markers. Growth curves and the capacity of colony forming were performed to test the self-renew and proliferative ability. Furthermore, the DMSCs are induced to osteoblasts, adipocytes, and chondrocytes in vitro. Our results suggest that DMSCs isolated from goose embryos possess similar biological characteristics to those from other species. The methods in establishment and cultivation of goose DMSCs line demonstrated a good self-renew and expansion potential in vitro, which provided a technological platform for preserving the valuable genetic resources of poultry and a great inspiration for in vitro investigation of avian MSCs.


Asunto(s)
Diferenciación Celular , Dermis/embriología , Embrión no Mamífero/metabolismo , Gansos/fisiología , Células Madre Mesenquimatosas/metabolismo , Animales , Técnicas de Cultivo de Célula/veterinaria , Células Cultivadas , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...