Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.672
Filtrar
1.
Langmuir ; 40(20): 10792-10803, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728598

RESUMEN

To achieve the green, sustainable, and controllable recovery of oil-water resources and to address the limited functionality of single superwet materials in oil-water separation, this study reports a multifunctional oil-water separation strategy by compositing the underwater superoleophobic and underoil superhydrophobic materials (HS). The underwater superoleophobic quartz sands with an oil contact angle of 152.68° were prepared by adjusting the particle size. This material demonstrated a water flux of 4688 L m-2 h-1 and a low-density oil and water mixture separation efficiency of 98.6%, which remained above 97.9% over 50 cycles. It was effective in separating oil-in-water emulsions with a separation efficiency of >99%. For HS, quartz sands were modified with dodecyltrimethoxysilane. The optimized HS-4 exhibited superhydrophobic properties with a water contact angle of 157.06°. It achieved an oil flux of 5775 L m-2 h-1 and a water and dichloromethane mixture separation efficiency of 98.4%. Additionally, they exhibited significant potential in the separation of water-in-oil emulsions. Furthermore, by placing the underwater superoleophobic and underoil superhydrophobic units at the bottom of the filter, we achieved cyclic separation of high-density oil and water mixtures, low-density oil and water mixtures, water-in-oil emulsions, and oil-in-water emulsions. The separation efficiency consistently exceeded 96.5% over 10 cycles. In addition, the oil-water separation mechanism of underwater oleophobic and underoil hydrophobic materials was demonstrated by the relative concentration distribution of water and oil with molecular dynamics simulations. This intelligent oil-water separation method marks a significant advancement in the sustainable separation of diverse oil-water mixtures.

2.
Reprod Biol ; 24(2): 100891, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38733656

RESUMEN

Azoospermia constitutes a significant factor in male infertility, defined by the absence of spermatozoa in the ejaculate, afflicting 15% of infertile men. However, a subset of azoospermic cases remains unattributed to known genetic variants. Prior investigations have identified the chibby family member 2 (CBY2) as prominently and specifically expressed in the testes of both humans and mice, implicating its potential involvement in spermatogenesis. In this study, we conducted whole exome sequencing (WES) on an infertile family to uncover novel genetic factors contributing to azoospermia. Our analysis revealed a homozygous c .355 C>A variant of CBY2 in a non-obstructive azoospermic patient. This deleterious variant significantly diminished the protein expression of CBY2 both in vivo and in vitro, leading to a pronounced disruption of spermatogenesis at the early round spermatid stage post-meiosis. This disruption was characterized by a nearly complete loss of elongating and elongated spermatids. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and co-immunoprecipitation assays demonstrated the interaction between CBY2 and Piwi-like protein 1 (PIWIL1). Immunofluorescence staining further confirmed the co-localization of CBY2 and PIWIL1 in the testes during the spermatogenic process in both humans and mice. Additionally, diminished PIWIL1 expression was observed in the testicular tissue from the affected patient. Our findings suggest that the homozygous c .355 C>A variant of CBY2 compromises CBY2 function, contributing to defective spermatogenesis at the round spermiogenic stage and implicating its role in the pathogenesis of azoospermia.

3.
Front Psychol ; 15: 1361878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694438

RESUMEN

This paper explored the training methods to improve the level of deaf college students' ToM. Eighty deaf college students were selected as participants and randomly divided into experimental group and control group. The ToM training group received ToM training; The non-ToM training group received physical-conversation training. Cognitive ToM task and affective ToM task were used to investigate the training effect. After training, the level of ToM of deaf college students who received ToM training was significantly improved. The results show that ToM training can effectively promote the level of deaf college students' ToM.

4.
Int J Biol Macromol ; 269(Pt 2): 132172, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719009

RESUMEN

Adjuvants including aluminum adjuvant (Alum) and oil-water emulsion have been widely used in inactivated pseudorabies virus (PRV) vaccines to improve their performance, however, they are not sufficient to protect from PRV infection because of the weak immune response and poor Th1-type immune response. Divalent manganese ion (Mn2+) has been reported to increase the cellular immune response significantly. In this work, a xanthan gum and carbomer-dispersed Mn2+-loaded tannic acid-polyethylene glycol (TPMnXC) nanoparticle colloid is developed and used as an adjuvant to improve the performance of the inactivated PRV vaccine. The good in vitro and in vivo biocompatibility of the developed TPMnXC colloid has been confirmed by the cell viability assay, erythrocyte hemolysis, blood routine analysis, and histological analysis of mouse organs and injection site. The TPMnXC-adjuvanted inactivated PRV vaccine (TPMnXC@PRV) significantly promotes higher and more balanced immune responses indicating with an increased specific total IgG antibody and IgG2a/IgG1 ratio, efficient splenocytes proliferation, and elevated Th1- and Th2-type cytokine secretion than those of control groups. Wild PRV challenge experiment is performed using mice as a model animal, achieving a protection rate of up to 86.67 %, which is much higher than those observed from the commercial Alum. This work not only demonstrates the high potentiality of TPMnXC in practical applications but also provides a new way to develop the Mn2+-loaded nanoadjuvant for veterinary vaccines.

5.
Adv Healthc Mater ; : e2304196, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712598

RESUMEN

For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.

6.
Cancer Invest ; : 1-12, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712480

RESUMEN

BACKGROUND: There is a controversy about whether surgery should proceed among metastatic pancreatic cancer (mPC) patients. A survival benefit was observed in mPC patients who underwent primary tumor resection; however, determining which patients would benefit from surgery is complex. For this purpose, we created a model to identify mPC patients who may benefit from primary tumor excision. METHODS: Patients with mPC were extracted from the Surveillance, Epidemiology, and End Results database, and separated into surgery and nonsurgery groups based on whether the primary tumor was resected. Propensity score matching (PSM) was applied to balance confounding factors between the two groups. A nomogram was developed using multivariable logistic regression to estimate surgical benefit. Our model is evaluated using multiple methods. RESULTS: About 662 of 14,183 mPC patients had primary tumor surgery. Kaplan-Meier analyses showed that the surgery group had a better prognosis. After PSM, a survival benefit was still observed in the surgery group. Among the surgery cohort, 202 patients survived longer than 4 months (surgery-beneficial group). The nomogram discriminated better in training and validation sets under the receiver operating characteristic (ROC) curve (AUC), and calibration curves were consistent. Decision curve analysis (DCA) revealed that it was clinically valuable. This model is better at identifying candidates for primary tumor excision. CONCLUSION: A helpful prediction model was developed and validated to identify ideal candidates who may benefit from primary tumor resection in mPC.

7.
Mol Oncol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750006

RESUMEN

Bladder cancer poses a significant challenge to chemotherapy due to its resistance to cisplatin, especially at advanced stages. Understanding the mechanisms behind cisplatin resistance is crucial for improving cancer therapy. The enzyme glutathione S-transferase omega class 1 (GSTO1) is known to be involved in cisplatin resistance in colon cancer. This study focused on its role in cisplatin resistance in bladder cancer. Our analysis of protein expression in bladder cancer cells stimulated by secretions from tumor-associated macrophages (TAMs) showed a significant increase in GSTO1. This prompted further investigation into the role of GSTO1 in bladder cancer. We found a strong correlation between GSTO1 expression and cisplatin resistance. Mechanistically, GSTO1 triggered the release of large extracellular vesicles (EVs) that promoted cisplatin efflux, thereby reducing cisplatin-DNA adduct formation and enhancing cisplatin resistance. Inhibition of EV release effectively counteracted the cisplatin resistance associated with GSTO1. In conclusion, GSTO1-mediated EV release may contribute to cisplatin resistance caused by TAMs in bladder cancer. Strategies to target GSTO1 could potentially improve the efficacy of cisplatin in treating bladder cancer.

9.
Materials (Basel) ; 17(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38611996

RESUMEN

Due to its inherent high hardness, strength, and plasticity, tantalum-tungsten (Ta-W) alloy poses a considerable challenge in machining, resulting in pronounced tool wear, diminished tool lifespan, and suboptimal surface quality. This study undertook experiments utilizing uncoated carbide tools, TiAlN-coated carbide tools, and AlTiN-coated carbide tools for machining Ta-2.5W alloy. The investigation delved into the intricacies of surface temperature, tool longevity, and the distinctive wear characteristics under varying coating materials and cutting parameters. Concurrently, a comprehensive exploration of the wear mechanisms affecting the tools was conducted. Among the observed wear modes, flank wear emerged as the predominant issue for turning tools. Across all three tool types, adhesive wear and diffusion wear were identified as the principal wear mechanisms, with the TiAlN-coated tools displaying a reduced level of wear compared to their AlTiN-coated counterparts. The experimental findings conclusively revealed that TiAlN-coated carbide tools exhibited an extended tool lifespan in comparison to uncoated carbide tools and AlTiN-coated carbide tools, signifying superior cutting performance.

10.
RSC Adv ; 14(16): 11217-11231, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38590351

RESUMEN

The present investigation delves into the adverse environmental impact of atmospheric pollutant gases, specifically nitrogen dioxide (NO2) and sulfur dioxide (SO2), which necessitates the identification and implementation of effective control measures. The central objective of this study is to explore the eradication of these pollutants through the utilization of aluminum Al13 and Al15 metal clusters, distinguished by their unique properties. The comprehensive evaluation of gas/cluster interactions is undertaken employing density functional theory (DFT). Geometric optimization calculations for all structures are executed using the ωB97XD functional and the Def2-svp basis set. To probe various interaction modalities, gas molecule distribution around the metal clusters is sampled using the bee colony algorithm. Frequency calculations employing identical model chemistry validate the precision of the optimization calculations. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) methodologies are applied for the analysis of intermolecular interactions. This research establishes the robust formation of van der Waals attractions between the investigated gas molecules, affirming aluminum metal clusters as viable candidates for the removal and control of these gases.

11.
ACS Appl Mater Interfaces ; 16(15): 19751-19763, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581368

RESUMEN

Diamond is widely acknowledged as the hardest naturally occurring material. Nevertheless, when exposed to friction against ferrous metals, it is prone to graphitization or amorphization, which limits the utilization of its extremely high hardness and wear resistance. These issues have persisted for decades without an effective solution. Here, we report that a covalently bonded heterostructure with mixed-dimensional carbons as a high-performance solid lubricant could effectively reduce diamond surface friction and mechanochemical wear with excellent load capacity and durability. When subjected to dry friction and heavy loads (20-150 N), the heterostructure exhibited a notable improvement over pristine diamond with reduced friction coefficients and relative wear rates by 22-45 and 67-91%, respectively. Especially under a 20 N load, the relative wear rate was an order of magnitude lower than that of pristine diamond. Additionally, experiments and molecular dynamics simulations revealed that the heterostructure integrated the outstanding properties of diamond (three-dimensional (3D)), nanographite (3D), and graphene (two-dimensional (2D)), resulting in improved lubrication and antiwear performance that could not be achieved by the individual carbon materials. The findings in this work will be beneficial to overcome the ferrous metal forbidden zone of diamond and are expected to expand the applications of engineered diamond surfaces and graphite/graphene in tribology, mechanics, and electronic fields.

12.
Plants (Basel) ; 13(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38592823

RESUMEN

The importance of rootstock in citrus production lies in its crucial role in determining tree growth, environmental stress tolerance, and fruit quality. Citrus junos Siebold ex Tanaka cv. Shuzhen No. 1, a recently developed rootstock, demonstrates excellent graft compatibility and abiotic stress tolerance. The objective of this study was to assess ten hybrid citrus cultivars grafted onto two C. junos rootstock selections, with the aim of determining the potential for industrial utilization of the new citrus rootstock. All graft junctions are mature and well established. Vigorous growth characterized all ten citrus cultivars on Shuzhen No. 1, with the largest tree's height reaching 280.33 cm (Wogan scion) and the widest scion's diameter being 67.52 cm (Chunjian scion). However, the scion-to-rootstock diameter ratio was the lowest at 0.62 (Chunxiang scion). C. junos rootstock selections significantly affected fruit weight (five of ten scions) and fruit color (seven of ten scions) but had negligible impact on peel thickness (nine of ten scions). Furthermore, rootstock type had a significant influence on fruit quality. In conclusion, our findings indicate strong graft compatibility between all scions and C. junos rootstocks, which can impact overall size and fruit quality. Based on these results, Shuzhen No. 1 is recommended as a valuable citrus rootstock.

13.
Nano Lett ; 24(15): 4610-4617, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564191

RESUMEN

The intricate protonation process in carbon dioxide reduction usually makes the product unpredictable. Thus, it is significant to control the reactive intermediates to manipulate the reaction steps. Here, we propose that the synergistic La-Ti active sites in the N-La2Ti2O7 nanosheets enable the highly selective carbon dioxide photoreduction into methane. In the photoreduction of CO2 over N-La2Ti2O7 nanosheets, in situ Fourier transform infrared spectra are utilized to monitor the *CH3O intermediate, pivotal for methane production, whereas such monitoring is not conducted for La2Ti2O7 nanosheets. Also, theoretical calculations testify to the increased charge densities on the Ti and La atoms and the regulated formation energy barrier of *CO and *CH3O intermediates by the constructed synergistic active sites. Accordingly, the methane formation rate of 7.97 µL h-1 exhibited by the N-La2Ti2O7 nanosheets, along with an electron selectivity of 96.6%, exceeds that of most previously reported catalysts under similar conditions.

14.
Mol Biol Rep ; 51(1): 520, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625436

RESUMEN

BACKGROUND: Mutations in human ether-à-go-go-related gene (hERG) potassium channels are closely associated with long QT syndrome (LQTS). Previous studies have demonstrated that macrolide antibiotics increase the risk of cardiovascular diseases. To date, the mechanisms underlying acquired LQTS remain elusive. METHODS: A novel hERG mutation I1025N was identified in an azithromycin-treated patient with acquired long QT syndrome via Sanger sequencing. The mutant I1025N plasmid was transfected into HEK-293 cells, which were subsequently incubated with azithromycin. The effect of azithromycin and mutant I1025N on the hERG channel was evaluated via western blot, immunofluorescence, and electrophysiology techniques. RESULTS: The protein expression of the mature hERG protein was down-regulated, whereas that of the immature hERG protein was up-regulated in mutant I1025N HEK-293 cells. Azithromycin administration resulted in a negative effect on the maturation of the hERG protein. Additionally, the I1025N mutation exerted an inhibitory effect on hERG channel current. Moreover, azithromycin inhibited hERG channel current in a concentration-dependent manner. The I1025N mutation and azithromycin synergistically decreased hERG channel expression and hERG current. However, the I1025N mutation and azithromycin did not alter channel gating dynamics. CONCLUSIONS: These findings suggest that hERG gene mutations might be involved in the genetic susceptibility mechanism underlying acquired LQTS induced by azithromycin.


Asunto(s)
Azitromicina , Síndrome de QT Prolongado , Humanos , Azitromicina/efectos adversos , Células HEK293 , Antibacterianos/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/genética , Mutación
15.
Artículo en Inglés | MEDLINE | ID: mdl-38656850

RESUMEN

Text content analysis for depression detection using machine learning techniques has become a prominent area of research. However, previous studies focused mainly on analyzing the textual content, neglecting the fundamental factors driving text generation. Consequently, existing models face the challenge of poor generalization to out-of-domain data as they struggle to capture the crucial features of depression. To address this, we propose a novel computational perspective of "stimulus-response patterns" that brings us closer to the essence of clinical diagnosis of depression. Adopting this computational perspective allows us to conceptually unify diverse datasets and generalize this perspective to common datasets in the field. We introduce the Stimulus-Response Patterns-aware Network (SRP-Net) as an exemplary approach within this computational perspective. To assess the performance of the SRP-Net, we constructed a multi-stimulus dataset and conducted experimental evaluations, demonstrating its exceptional cross-stimulus generalizability. Furthermore, we demonstrated the promising performance of SPR-Net in real medical scenarios and conducted an interpretability analysis of the stimulus-response patterns. Our research investigates the critical role of stimulus-response patterns in enhancing the generalizability of text-based depression detection models, which can potentially facilitate data-driven depression detection to approach the diagnostic accuracy of psychiatrists.

16.
Sci Total Environ ; 927: 172156, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588742

RESUMEN

The variability and intrinsic mechanisms of oxidative stress induced by microplastics at different trophic levels in freshwater food chains are not well understood. To comprehensively assess the oxidative stress induced by polystyrene microplastics (PS-MPs) in freshwater food chains, the present study first quantified the oxidative stress induced by PS-MPs in organisms at different trophic levels using factorial experimental design and molecular dynamics methods. Then focuses on analyzing the variability of these responses across different trophic levels using mathematical statistical analysis. Notably, higher trophic level organisms exhibit diminished responses under PS-MPs exposure. Furthermore, the coexistence of multiple additives was found to mask these responses, with antioxidant plastic additives significantly influencing oxidative stress responses. Mechanism analysis using computational chemistry simulation determines that protein structure and amino acid characteristics are key factors driving PS-MPs induced oxidative stress variation in freshwater organisms at different nutrient levels. Increased hydrophobic additives induce protein helicalization and amino acid residue aggregation. This study systematically reveals the variability of biological oxidative stress response under different nutrient levels, emphasizing the pivotal role of chemical additives. Overall, this study offers crucial insights into PS-MPs' impact on oxidative stress responses in freshwater ecosystems, informing future environmental risk assessment.


Asunto(s)
Cadena Alimentaria , Agua Dulce , Microplásticos , Estrés Oxidativo , Contaminantes Químicos del Agua , Estrés Oxidativo/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Agua Dulce/química , Animales , Poliestirenos/toxicidad , Organismos Acuáticos/efectos de los fármacos
17.
Acta Pharm Sin B ; 14(4): 1624-1643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572092

RESUMEN

HMGA2, a pivotal transcription factor, functions as a versatile regulator implicated in the progression of diverse aggressive malignancies. In this study, mass spectrometry was employed to identify ubiquitin-specific proteases that potentially interact with HMGA2, and USP48 was identified as a deubiquitinating enzyme of HMGA2. The enforced expression of USP48 significantly increased HMGA2 protein levels by inhibiting its degradation, while the deprivation of USP48 promoted HMGA2 degradation, thereby suppressing tumor invasion and metastasis. We discovered that USP48 undergoes SUMOylation at lysine 258, which enhances its binding affinity to HMGA2. Through subsequent phenotypic screening of small molecules, we identified DUB-IN-2 as a remarkably potent pharmacological inhibitor of USP48. Interestingly, the small-molecule inhibitor targeting USP48 induces destabilization of HMGA2. Clinically, upregulation of USP48 or HMGA2 in cancerous tissues is indicative of poor prognosis for patients with colorectal cancer (CRC). Collectively, our study not only elucidates the regulatory mechanism of DUBs involved in HMGA2 stability and validates USP48 as a potential therapeutic target for CRC, but also identifies DUB-IN-2 as a potent inhibitor of USP48 and a promising candidate for CRC treatment.

18.
Sci Rep ; 14(1): 8132, 2024 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584153

RESUMEN

To figure out how does SARS-CoV-2 affect sperm parameters and what influencing factors affect the recovery of sperm quality after infection? We conducted a prospective cohort study and initially included 122 men with SARS-CoV-2 infection. The longest time to track semen quality after infection is 112 days and 58 eligible patients were included in our study eventually. We subsequently exploited a linear mixed-effects model to statistically analyze their semen parameters at different time points before and after SARS-CoV-2 infection. Semen parameters were significantly reduced after SARS-CoV-2 infection, including total sperm count (211 [147; 347] to 167 [65.0; 258], P < 0.001), sperm concentration (69.0 [38.8; 97.0] to 51.0 [25.5; 71.5], P < 0.001), total sperm motility (57.5 [52.3; 65.0] to 51.0 [38.5; 56.8], P < 0.001), progressive motility (50.0 [46.2; 58.0] to 45.0 [31.5; 52.8], P < 0.001). The parameters displayed the greatest diminution within 30 days after SARS-CoV-2 infection, gradually recovered thereafter, and exhibited no significant difference after 90 days compared with prior to COVID-19 infection. In addition, the patients in the group with a low-grade fever showed a declining tendency in semen parameters, but not to a significant degree, whereas those men with a moderate or high fever produced a significant drop in the same parameters. Semen parameters were significantly reduced after SARS-CoV-2 infection, and fever severity during SARS-CoV-2 infection may constitute the main influencing factor in reducing semen parameters in patients after recovery, but the effect is reversible and the semen parameters gradually return to normal with the realization of a new spermatogenic cycle.


Asunto(s)
COVID-19 , Infertilidad Masculina , Humanos , Masculino , Análisis de Semen , Semen , Estudios Prospectivos , Motilidad Espermática , SARS-CoV-2 , Espermatozoides , Recuento de Espermatozoides
19.
Sci Total Environ ; 927: 172368, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614346

RESUMEN

BACKGROUND: Disinfection byproducts (DBPs) have been shown to impair thyroid function in experimental models. However, epidemiological evidence is scarce. METHODS: This study included 1190 women undergoing assisted reproductive technology (ART) treatment from the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. Serum thyrotropin (TSH), free triiodothyronine (FT3), and free thyroxine (FT4) were measured as indicators of thyroid function. FT4/FT3 and TSH/FT4 ratios were calculated as markers of thyroid hormone homeostasis. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two most abundant HAAs, in urine were detected to assess individual DBP exposures. RESULTS: After adjusting for relevant covariates, positive associations were observed between urinary TCAA concentrations and serum TSH and TSH/FT4 levels (e.g., percent change = 5.82 %, 95 % CI: 0.70 %, 11.21 % for TSH), whereas inverse associations were found for serum FT3 and FT4 (e.g., percent change = -1.29 %, 95 % CI: -2.49 %, -0.07 % for FT3). There also was a negative association between urinary DCAA concentration and serum FT4/FT3 (percent change = -2.49 %, 95 % CI: -4.71 %, -0.23 %). These associations were further confirmed in the restricted cubic spline and generalized additive models with linear or U-shaped dose-response relationships. CONCLUSION: Urinary HAAs were associated with altered thyroid hormone homeostasis among women undergoing ART treatment.


Asunto(s)
Glándula Tiroides , Humanos , Femenino , Adulto , Tiroxina/sangre , Triyodotironina/sangre , Tirotropina/sangre , Hormonas Tiroideas/sangre , Pruebas de Función de la Tiroides , Desinfectantes , Acetatos , China
20.
World J Clin Cases ; 12(10): 1793-1798, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38660069

RESUMEN

BACKGROUND: Whether hyperbaric oxygen therapy (HBOT) can cause paradoxical herniation is still unclear. CASE SUMMARY: A 65-year-old patient who was comatose due to brain trauma underwent decompressive craniotomy and gradually regained consciousness after surgery. HBOT was administered 22 d after surgery due to speech impairment. Paradoxical herniation appeared on the second day after treatment, and the patient's condition worsened after receiving mannitol treatment at the rehabilitation hospital. After timely skull repair, the paradoxical herniation was resolved, and the patient regained consciousness and had a good recovery as observed at the follow-up visit. CONCLUSION: Paradoxical herniation is rare and may be caused by HBOT. However, the underlying mechanism is unknown, and the understanding of this phenomenon is insufficient. The use of mannitol may worsen this condition. Timely skull repair can treat paradoxical herniation and prevent serious complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...