Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(9): e2104491, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35088582

RESUMEN

It has been previously shown that (never in mitosis gene A)-related kinase 2 (NEK2) is upregulated in multiple myeloma (MM) and contributes to drug resistance. However, the mechanisms behind this upregulation remain poorly understood. In this study, it is found that amplification of NEK2 and hypermethylation of distal CpG islands in its promoter correlate strongly with increased NEK2 expression. Patients with NEK2 amplification have a poor rate of survival and often exhibit TP53 deletion, which is an independent prognostic factor in MM. This combination of TP53 knockout and NEK2 overexpression induces asymmetric mitosis, proliferation, drug resistance, and tumorigenic behaviors in MM in vitro and in vivo. In contrast, delivery of wild type p53 and suppression of NEK2 in TP53-/- MM cell lines inhibit tumor formation and enhance the effect of Bortezomib against MM. It is also discovered that inactivating p53 elevates NEK2 expression genetically by inducing NEK2 amplification, transcriptionally by increased activity of cell cycle-related genes like E2F8 and epigenetically by upregulating DNA methyltransferases. Dual defects of TP53 and NEK2 may define patients with the poorest outcomes in MM with p53 inactivation, and NEK2 may serve as a novel therapeutic target in aggressive MM with p53 abnormalities.


Asunto(s)
Mieloma Múltiple , Bortezomib/metabolismo , Bortezomib/farmacología , Bortezomib/uso terapéutico , Línea Celular Tumoral , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/uso terapéutico
2.
Oncogenesis ; 9(3): 31, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139666

RESUMEN

Multiple myeloma (MM) is the second most prevalent hematologic malignancy. Although the use of bortezomib (BTZ) significantly improves MM therapy, intrinsic and acquired drug resistance to BTZ remains a major clinical problem. In this study, we find that Cdc37, a key co-chaperone of Hsp90, is downregulated in relapsed MM patients, especially after BTZ treatment, suggesting a link between Cdc37 and BTZ resistance. Suppression of Cdc37 or inhibition of Cdc37/Hsp90 association induces plasma cell dedifferentiation, quiescence of MM cells, and BTZ resistance in MM. Furthermore, we discover that Cdc37 expression correlates positively with Xbp1s, a critical transcription factor for plasma cell differentiation in MM samples. Depletion/inhibition of Cdc37 downregulates Xbp1s, while overexpression of Xbp1s in MM cell lines partially rescues plasma immaturation and BTZ resistance. It is suggested that Xbp1s may act as a key downstream effector of Cdc37. Experiments with a mouse model also demonstrate that Cdc37 inhibition promotes plasma cell immaturation, confers BTZ resistance, and increases MM progression in vivo. Together, we identify a critical factor and a new signaling mechanism that regulate plasma cell immaturation and BTZ resistance in MM cells. Our findings may constitute a novel strategy that overcomes BTZ resistance in MM therapy.

3.
Br J Haematol ; 190(1): 52-66, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32037523

RESUMEN

The serine synthesis pathway (SSP) is active in multiple cancers. Previous study has shown that bortezomib (BTZ) resistance is associated with an increase in the SSP in multiple myeloma (MM) cells; however, the underlying mechanisms of SSP-induced BTZ resistance remain unclear. In this study, we found that phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in the SSP, was significantly elevated in CD138+ cells derived from patients with relapsed MM. Moreover, high PHGDH conferred inferior survival in MM. We also found that overexpression of PHDGH in MM cells led to increased cell growth, tumour formation, and resistance to BTZ in vitro and in vivo, while inhibition of PHGDH by short hairpin RNA or NCT-503, a specific inhibitor of PHGDH, inhibited cell growth and BTZ resistance in MM cells. Subsequent mechanistic studies demonstrated PHGDH decreased reactive oxygen species (ROS) through increasing reduced glutathione (GSH) synthesis, thereby promoting cell growth and BTZ resistance in MM cells. Furthermore, adding GSH to PHGDH silenced MM cells reversed S phase arrest and BTZ-induced cell death. These findings support a mechanism in which PHGDH promotes proliferation and BTZ resistance through increasing GSH synthesis in MM cells. Therefore, targeting PHGDH is a promising strategy for MM therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Bortezomib/uso terapéutico , Glutatión/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Fosfoglicerato-Deshidrogenasa/uso terapéutico , Animales , Antineoplásicos/farmacología , Bortezomib/farmacología , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Mieloma Múltiple/fisiopatología
4.
Mol Oncol ; 14(4): 763-778, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31955515

RESUMEN

NEK2 is associated with drug resistance in multiple cancers. Our previous studies indicated that high NEK2 confers inferior survival in multiple myeloma (MM); thus, a better understanding of the mechanisms by which NEK2 induces drug resistance in MM is required. In this study, we discovered that NEK2 enhances MM cell autophagy, and a combination of autophagy inhibitor chloroquine (CQ) and chemotherapeutic bortezomib (BTZ) significantly prevents NEK2-induced drug resistance in MM cells. Interestingly, NEK2 was found to bind and stabilize Beclin-1 protein but did not affect its mRNA expression and phosphorylation. Moreover, autophagy enhanced by NEK2 was significantly prevented by knockdown of Beclin-1 in MM cells, suggesting that Beclin-1 mediates NEK2-induced autophagy. Further studies demonstrated that Beclin-1 ubiquitination is decreased through NEK2 interaction with USP7. Importantly, knockdown of Beclin-1 sensitized NEK2-overexpressing MM cells to BTZ in vitro and in vivo. In conclusion, we identify a novel mechanism whereby autophagy is activated by the complex of NEK2/USP7/Beclin-1 in MM cells. Targeting the autophagy signaling pathway may provide a promising therapeutic strategy to overcome NEK2-induced drug resistance in MM.


Asunto(s)
Antineoplásicos/farmacología , Beclina-1/metabolismo , Bortezomib/farmacología , Resistencia a Antineoplásicos , Mieloma Múltiple/tratamiento farmacológico , Quinasas Relacionadas con NIMA/metabolismo , Animales , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Bortezomib/uso terapéutico , Línea Celular Tumoral , Humanos , Ratones , Mieloma Múltiple/metabolismo , Estabilidad Proteica/efectos de los fármacos
5.
Mol Carcinog ; 59(3): 265-280, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31867776

RESUMEN

Nasopharyngeal carcinoma (NPC) has the highest rate of metastasis among head and neck cancers, and distant metastasis is the major reason for treatment failure. We have previously shown that high cyclooxygenase-2 (COX-2) expression is associated with a poor prognosis of patients with NPC and inhibits chemotherapy-induced senescence in NPC cells. In this study, we found that COX-2 was upregulated in cancer-associated fibroblasts (CAFs) derived from NPC by RNA-Seq. Furthermore, elevated COX-2 expression in CAF was detected in NPC patients with poor survival and distant metastasis by using immunohistochemistry. Then, we identified that COX-2 is highly expressed in CAF at the distant metastasis site in seven paired NPC patients. High expression of COX-2 and secretion of prostaglandin E2, a major product catalyzed by COX-2 in fibroblasts, promotes migration and invasiveness of NPC cells in vitro. On the contrary, inhibition of COX-2 has the opposite effect in vitro as well as in the COX-2-/- mouse with the lung metastasis model in vivo. Mechanistically, we discovered that COX-2 elevates tumor necrosis factor-α expression in CAF to promote NPC cell migration and invasiveness. Overall, our results identified a novel target in CAF promoting NPC metastasis. Our findings suggested that high expression of COX-2 in CAF may serve as a new prognostic indicator for NPC metastasis and provide the possibility of targeting CAF for treating advanced NPC.


Asunto(s)
Fibroblastos Asociados al Cáncer/patología , Ciclooxigenasa 2/genética , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Pronóstico , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA