Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 20(14): 6218-6226, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38976399

RESUMEN

Recent advancements in neural networks have led to significant progress in addressing many-body electron correlations in small molecules and various physical models. In this work, we propose QiankunNet-Solid, which incorporates periodic boundary conditions into the neural network quantum state (NNQS) framework based on generative Transformer architecture along with a batched autoregressive sampling (BAS) method, enabling the effective ab initio calculation of real solid materials. The accuracy of this method is demonstrated in one-, two-, and three-dimensional periodic systems, with results comparable to those of full configuration interaction and coupled-cluster method, even in the strongly correlated regime. Furthermore, we compute the band structures and density of states for silicon crystal. The successful incorporation of periodic boundary conditions into the NNQS framework through QiankunNet-Solid opens up new possibilities for the accurate and efficient study of electronic structure properties in solid-state physics.

2.
Cancer Lett ; 598: 217088, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945203

RESUMEN

The causal link between long terminal repeat (LTR) retrotransposon-derived lncRNAs and hepatocellular carcinoma (HCC) remains elusive and whether these cancer-exclusive lncRNAs contribute to the effectiveness of current HCC therapies is yet to explore. Here, we investigated the activation of LTR retrotransposon-derived lncRNAs in a broad range of liver diseases. We found that LTR retrotransposon-derived lncRNAs are mainly activated in HCC and is correlated with the proliferation status of HCC. Furthermore, we discovered that an LTR retrotransposon-derived lncRNA, LINC01446, exhibits specific expression in HCC. HCC patients with higher LINC01446 expression had shorter overall survival times. In vitro and in vivo assays showed that LINC01446 promoted HCC growth and angiogenesis. Mechanistically, LINC01446 bound to serine/arginine protein kinase 2 (SRPK2) and activated its downstream target, serine/arginine splicing factor 1 (SRSF1). Furthermore, activation of the SRPK2-SRSF1 axis increased the splicing and expression of VEGF isoform A165 (VEGFA165). Notably, inhibiting LINC01446 expression dramatically impaired tumor growth in vivo and resulted in better therapeutic outcomes when combined with antiangiogenic agents. In addition, we found that the transcription factor MESI2 bound to the cryptic MLT2B3 LTR promoter and drove LINC01446 transcription in HCC cells. Taken together, our findings demonstrate that LTR retrotransposon-derived LINC01446 promotes the progression of HCC by activating the SRPK2/SRSF1/VEGFA165 axis and highlight targeting LINC01446 as a potential therapeutic strategy for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Neoplasias Hepáticas , Neovascularización Patológica , Proteínas Serina-Treonina Quinasas , ARN Largo no Codificante , Factores de Empalme Serina-Arginina , Factor A de Crecimiento Endotelial Vascular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , ARN Largo no Codificante/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neovascularización Patológica/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Ratones , Proliferación Celular/genética , Retroelementos/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Línea Celular Tumoral , Secuencias Repetidas Terminales/genética , Ratones Desnudos , Femenino , Ratones Endogámicos BALB C , Transducción de Señal , Angiogénesis
3.
Mol Cancer ; 23(1): 111, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778348

RESUMEN

BACKGROUND: Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS: This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS: Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS: Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.


Asunto(s)
Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/mortalidad , Femenino , Resistencia a Antineoplásicos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Animales , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Pronóstico , N-Metiltransferasa de Histona-Lisina
4.
Commun Biol ; 6(1): 1104, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907652

RESUMEN

Vascular smooth muscle cells (VSMCs) are the major contributor to vascular repair and remodeling, which showed high level of phenotypic plasticity. Abnormalities in VSMC plasticity can lead to multiple cardiovascular diseases, wherein alternative splicing plays important roles. However, alternative splicing variants in VSMC plasticity are not fully understood. Here we systematically characterized the long-read transcriptome and their dysregulation in  human aortic smooth muscle cells (HASMCs) by employing the Oxford Nanopore Technologies long-read RNA sequencing in HASMCs that are separately treated with platelet-derived growth factor, transforming growth factor, and hsa-miR-221-3P transfection. Our analysis reveals frequent alternative splicing events and thousands of unannotated transcripts generated from alternative splicing. HASMCs treated with different factors exhibit distinct transcriptional reprogramming modulated by alternative splicing. We also found that unannotated transcripts produce different open reading frames compared to the annotated transcripts. Finally, we experimentally validated the unannotated transcript derived from gene CISD1, namely CISD1-u, which plays a role in the phenotypic switch of HASMCs. Our study characterizes the phenotypic modulation of HASMCs from an insight of long-read transcriptome, which would promote the understanding and the manipulation of HASMC plasticity in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Nanoporos , Humanos , Empalme Alternativo , Músculo Liso Vascular/metabolismo , Enfermedades Cardiovasculares/metabolismo , MicroARNs/genética , Análisis de Secuencia de ARN , Miocitos del Músculo Liso/metabolismo
5.
Cell Mol Life Sci ; 80(9): 256, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589744

RESUMEN

BACKGROUND: Increasing evidences has indicated that primary and acquired resistance of ovarian cancer (OC) to platinum is mediated by multiple molecular and cellular factors. Understanding these mechanisms could promote the therapeutic efficiency for patients with OC. METHODS: Here, we screened the expression pattern of circRNAs in samples derived from platinum-resistant and platinum-sensitive OC patients using RNA-sequencing (RNA-seq). The expression of hsa_circ_0010467 was validated by Sanger sequencing, RT-qPCR, and fluorescence in situ hybridization (FISH) assays. Overexpression and knockdown experiments were performed to explore the function of hsa_circ_0010467. The effects of hsa_circ_0010467 on enhancing platinum treatment were validated in OC cells, mouse model and patient-derived organoid (PDO). RNA pull-down, RNA immunoprecipitation (RIP), and dual-luciferase reporter assays were performed to investigate the interaction between hsa_circ_0010467 and proteins. RESULTS: Increased expression of hsa_circ_0010467 is observed in platinum-resistant OC cells, tissues and serum exosomes, which is positively correlated with advanced tumor stage and poor prognosis of OC patients. Hsa_circ_0010467 is found to maintain the platinum resistance via inducing tumor cell stemness, and silencing hsa_circ_0010467 substantially increases the efficacy of platinum treatment on inhibiting OC cell proliferation. Further investigation reveals that hsa_circ_0010467 acts as a miR-637 sponge to mediate the repressive effect of miR-637 on leukemia inhibitory factor (LIF) and activates the LIF/STAT3 signaling pathway. We further discover that AUF1 could promote the biogenesis of hsa_circ_0010467 in OC. CONCLUSION: Our study uncovers the mechanism that hsa_circ_0010467 mediates the platinum resistance of OC through AUF1/hsa_circ_0010467/miR-637/LIF/STAT3 axis, and provides potential targets for the treatment of platinum-resistant OC patients.


Asunto(s)
Ribonucleoproteína Nuclear Heterogénea D0 , MicroARNs , Neoplasias Ováricas , ARN Circular , Animales , Femenino , Humanos , Ratones , Hibridación Fluorescente in Situ , Factor Inhibidor de Leucemia , MicroARNs/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , ARN Circular/genética , Factor de Transcripción STAT3/genética , Ribonucleoproteína Nuclear Heterogénea D0/genética
7.
Front Chem ; 11: 1156891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304683

RESUMEN

We have proposed, for the first time, an OpenCL implementation for the all-electron density-functional perturbation theory (DFPT) calculations in FHI-aims, which can effectively compute all its time-consuming simulation stages, i.e., the real-space integration of the response density, the Poisson solver for the calculation of the electrostatic potential, and the response Hamiltonian matrix, by utilizing various heterogeneous accelerators. Furthermore, to fully exploit the massively parallel computing capabilities, we have performed a series of general-purpose graphics processing unit (GPGPU)-targeted optimizations that significantly improved the execution efficiency by reducing register requirements, branch divergence, and memory transactions. Evaluations on the Sugon supercomputer have shown that notable speedups can be achieved across various materials.

8.
Nat Commun ; 13(1): 6803, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357395

RESUMEN

Transcribed RNAs undergo various regulation and modification to become functional transcripts. Notably, cancer transcriptome has not been fully characterized at transcript resolution. Herein, we carry out a reference-based transcript assembly across >1000 cancer cell lines. We identify 498,255 transcripts, approximately half of which are unannotated. Unannotated transcripts are closely associated with cancer-related hallmarks and show clinical significance. We build a high-confidence RNA binding protein (RBP)-transcript regulatory network, wherein most RBPs tend to regulate transcripts involved in cell proliferation. We identify numerous transcripts that are highly associated with anti-cancer drug sensitivity. Furthermore, we establish RBP-transcript-drug axes, wherein PTBP1 is experimentally validated to affect the sensitivity to decitabine by regulating KIAA1522-a6 transcript. Finally, we establish a user-friendly data portal to serve as a valuable resource for understanding cancer transcriptome diversity and its potential clinical utility at transcript level. Our study substantially extends cancer RNA repository and will facilitate anti-cancer drug discovery.


Asunto(s)
Neoplasias , Transcriptoma , Transcriptoma/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN , Neoplasias/tratamiento farmacológico , Neoplasias/genética
9.
Front Cell Dev Biol ; 10: 795084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141219

RESUMEN

Long noncoding RNAs (lncRNAs) are a type of transcript that is >200 nucleotides long with no protein-coding capacity. Accumulating studies have suggested that lncRNAs contain open reading frames (ORFs) that encode peptides. Although several noncoding RNA-encoded peptide-related databases have been developed, most of them display only a small number of experimentally validated peptides, and resources focused on lncRNA-encoded peptides are still lacking. We used six types of evidence, coding potential assessment tool (CPAT), coding potential calculator v2.0 (CPC2), N6-methyladenosine modification of RNA sites (m6A), Pfam, ribosome profiling (Ribo-seq), and translation initiation sites (TISs), to evaluate the coding potential of 883,804 lncRNAs across 39 species. We constructed a comprehensive database of lncRNA-encoded peptides, LncPep (http://www.shenglilabs.com/LncPep/). LncPep provides three major functional modules: 1) user-friendly searching/browsing interface, 2) prediction and BLAST modules for exploring novel lncRNAs and peptides, and 3) annotations for lncRNAs, peptides and supporting evidence. Taken together, LncPep is a user-friendly and convenient platform for discovering and investigating peptides encoded by lncRNAs.

10.
Cell Discov ; 7(1): 118, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34903728

RESUMEN

PTEN is a crucial tumor suppressor and loss of PTEN protein is involved in various cancers. However, the detailed molecular mechanisms of PTEN loss in cancers remain elusive, especially the involvement of lncRNAs. Here, lncRNA RP11-295G20.2 is found to be significantly upregulated in hepatocellular carcinoma (HCC) and promotes the growth of liver cancer cells both in vitro and in vivo. Furthermore, RP11-295G20.2 inhibits autophagy in liver cancer cells. Interestingly, RP11-295G20.2 directly binds to the PTEN protein and leads to its degradation. RP11-295G20.2 expression is inversely correlated with PTEN protein expression in 82 TCGA/TCPA-LIHC samples. Surprisingly, RP11-295G20.2-induced PTEN degradation occurs through the lysosomal pathway instead of the proteasome pathway. RP11-295G20.2 binds to the N terminus of PTEN and facilitates the interaction of p62 with PTEN. Thus, PTEN is translocated into lysosomes and degraded. RP11-295G20.2 also influences AKT phosphorylation and forkhead box O 3a (FOXO3a) translocation into the nucleus, in turn regulating the transcription of autophagy-related genes. Collectively, RP11-295G20.2 directly binds to PTEN and enables its lysosomal degradation. This newly identified RP11-295G20.2/PTEN axis reveals an unexplored molecular mechanism regarding PTEN loss in liver cancer and might provide new therapeutic benefits for liver cancer patients.

11.
Front Immunol ; 12: 761890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777377

RESUMEN

Inflammatory skin diseases are induced by disorders of the host defense system of the skin, which is composed of a barrier, innate and acquired immunity, as well as the cutaneous microbiome. These disorders are characterized by recurrent cutaneous lesions and intense itch, which seriously affecting life quality of people across all ages and ethnicities. To elucidate molecular factors for typical inflammatory skin diseases (such as psoriasis and atopic dermatitis), transcriptomic profiling assays have been largely performed. Additionally, single-cell RNA sequencing (scRNA-seq) as well as spatial transcriptomic profiling have revealed multiple potential translational targets and offered guides to improve diagnosis and treatment strategies for inflammatory skin diseases. High-throughput transcriptomics data has shown unprecedented power to disclose the complex pathophysiology of inflammatory skin diseases. Here, we will summarize discoveries from transcriptomics data and discuss how to maximize the transcriptomics data to propel the development of diagnostic biomarkers and therapeutic targets in inflammatory skin diseases.


Asunto(s)
Enfermedades de la Piel/genética , Animales , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , ARN no Traducido , Análisis de la Célula Individual , Transcriptoma
12.
Mol Ther Nucleic Acids ; 26: 11-21, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34513290

RESUMEN

Pancreatic cancer is a highly aggressive cancer with an exceedingly low rate of response to treatments, which calls for comprehensive molecular characterization of pancreatic cancer cell lines (PCCLs). We screened multi-layer molecular data of 36 PCCLs, including gene mutation, gene expression, microRNA (miRNA) expression, and protein profiles. Our comparative analysis of genomic mutations found that PCCLs recapitulated genomic alterations of the primary tumor and suggested potential therapeutic strategies for clinical interventions. The panel of 36 PCCLs was classified into 2 subgroups based on transcriptomic mRNA expression, wherein the C1 subgroup was characterized with differentiation, whereas C2 cell lines were featured with immunity, angiogenesis, epidermis, and proliferation. Transcriptomic classification was further recapitulated by miRNA and protein expression. Additionally, the differential proteins between C1 and C2 subgroups were prominently involved in epidermal growth factor receptor (EGFR) signaling, phosphatidylinositol 3-kinase (PI3K) signaling, and mitogen-activated protein kinase (MAPK) signaling pathways. Tumor samples from different subgroups exhibited distinct infiltration of CD4 naive cells and monocytes. Remarkably, patients in subgroups C1 showed longer survival, whereas those in C2 had worse clinical outcome. Further integrative analysis revealed that temozolomide and NVP-TAE684 showed higher sensitivity in the C1 subgroup, whereas the C2 cell lines were more sensitive to SR1001 and SRT-1720. Our results also showed that PCCLs with mutations in CDKN2A, TP53, and SMAD4 were more sensitive to certain anti-cancer drugs. Our integrative analysis identified molecular features of pancreatic cancer that were associated with clinical significance and drug sensitivity, providing potentially effective strategies for precision treatments of patients with pancreatic cancer.

13.
Trends Cancer ; 7(7): 577-579, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33992534

RESUMEN

Retrotransposons have been known as major sources of genomic instability that trigger and promote cancer development. In a recent study, Gu et al. revealed that MPP8 deficiency impeded tumor development through reactivation long interspersed element-1 (LINE-1 or L1) retrotransposons in acute myeloid leukemia (AML), suggesting a tumor-suppressive role for retrotransposons.


Asunto(s)
Neoplasias , Retroelementos , Inestabilidad Genómica , Humanos , Elementos de Nucleótido Esparcido Largo
14.
Oncogene ; 39(46): 7005-7018, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33060856

RESUMEN

Epigenetic alteration is one of the hallmarks of colorectal cancer (CRC). Many driver genes are regulated by DNA methylation in CRC. However, the role of DNA methylation regulating lncRNAs remain elusive. Here, we identify that SNHG11 (small nucleolar RNA host gene 11) is upregulated by promotor hypomethylation in CRC and is associated with poor prognosis in CRC patients. SNHG11 can promote CRC cell migration and metastasis under hypoxia. Interestingly, the DNA-binding motif of SNHG11 is similar to that of HIF-1α. In addition, SNHG11-associated genes are enriched with members of the HIF-1 signaling pathway in CRC. Mechanistically, SNHG11 binds to the pVHLrecognition sites on HIF-1α, thus blocking the interaction of pVHL with HIF-1α and preventing its ubiquitination and degradation. Moreover, SNHG11 upregulates the expression of HIF-1α target genes, i.e., AK4, ENO1, HK2, and Twist1. Notably, SNHG11 can bind to the HRE sites in the promoter of these genes and increase their transcription. In summary, these results identify a SNHG11/ HIF-1α axis that plays a pivotal role in tumor invasion and metastasis.


Asunto(s)
Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Hipoxia de la Célula/genética , Línea Celular Tumoral , Movimiento Celular/genética , Estudios de Cohortes , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Metilación de ADN/genética , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Pronóstico , Regiones Promotoras Genéticas/genética , Estabilidad Proteica , ARN Largo no Codificante , Transducción de Señal/genética , Activación Transcripcional , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Mol Cancer ; 19(1): 11, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964396

RESUMEN

BACKGROUND: Hypoxic tumors are refractory to DNA damage drugs. However, the underlying mechanism has yet to be elucidated. We aimed to identify lncRNAs that upregulated under hypoxia and their effects on colorectal cancer (CRC). METHODS: CRC cells were treated with 1% O2 to identify lncRNAs that upregulated under hypoxia. We integrated these lncRNAs with RNA-seq of 4 paired CRC tissues and TCGA data to get candidate lncRNAs. Multiple in vitro and in vivo assays were used to explore the role of LUCAT1 in CRC. RESULTS: We identified a hypoxia-induced lncRNA LUCAT1 that facilitated the growth of CRC cells and contributed to drug resistance of CRC cells both in vitro and in vivo. Mechanically, LUCAT1 interacts with polypyrimidine tract binding protein 1 (PTBP1) in CRC cells, facilitates the association of a set of DNA damage related genes with PTBP1, thus resulting in altered alternative splicing of these genes. Moreover, ectopic expression of PTBP1 in CRC cells with knockdown of LUCAT1 abrogated the effects induced by LUCAT1 knockdown. Chemotherapeutics drug combined with LUCAT1 knockdown via antisense oligonucleotides (ASO) would get a better outcome in vivo, compared with group treated with chemotherapeutic drug only. Notably, LUCAT1 is upregulated in CRC tissues, compared to adjacent normal tissues; and CRC patients with higher LUCAT1 have a worse prognosis and poorly responded to chemotherapy in the clinic. CONCLUSIONS: Our data suggested CRC cells utilizes LUCAT1 to develop resistance to DNA damage drugs, and disrupting the LUCAT1/PTBP1 axis might be a promising therapeutic strategy for refractory hypoxic tumors.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Hipoxia/fisiopatología , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN Largo no Codificante/genética , Animales , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteína de Unión al Tracto de Polipirimidina/genética , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cancer Res ; 80(5): 976-987, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31874857

RESUMEN

Long terminal repeat (LTR) retrotransposons are a major class of transposable elements, accounting for 8.67% of the human genome. LTRs can serve as regulatory sequences and drive transcription of tissue or cancer-specific transcripts. However, the role of these LTR-activated transcripts, especially long non-coding RNAs (lncRNA), in cancer development remains largely unexplored. Here, we identified a novel lncRNA derived from MER52A retrotransposons (lncMER52A) that was exclusively expressed in hepatocellular carcinoma (HCC). HCC patients with higher lncMER52A had advanced TNM stage, less differentiated tumors, and shorter overall survival. LncMER52A promoted invasion and metastasis of HCC cells in vitro and in vivo. Mechanistically, lncMER52A stabilized p120-catenin and triggered the activation of Rho GTPase downstream of p120-catenin. Furthermore, we found that chromatin accessibility was crucial for the expression of lncMER52A. In addition, YY1 transcription factor bound to the cryptic MER52A LTR promoter and drove lncMER52A transcription in HCC. In conclusion, we identified an LTR-activated lncMER52A, which promoted the progression of HCC cells via stabilizing p120-catenin and activating p120-ctn/Rac1/Cdc42 axis. LncMER52A could serve as biomarker and therapeutic target for patients with HCC. SIGNIFICANCE: A novel long noncoding RNA lncMER52 modulates cell migration and invasion via posttranslational control of p120-catenin protein stability. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/5/976/F1.large.jpg.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Cateninas/genética , Neoplasias Hepáticas/genética , ARN Largo no Codificante/metabolismo , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hígado/patología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Estabilidad Proteica , ARN Largo no Codificante/genética , RNA-Seq , Retroelementos/genética , Transducción de Señal/genética , Secuencias Repetidas Terminales/genética , Transcripción Genética , Factor de Transcripción YY1/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Catenina delta
17.
Hepatology ; 72(2): 548-568, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31815296

RESUMEN

BACKGROUND AND AIMS: Alternative splicing (AS) is a key step that increases the diversity and complexity of the cancer transcriptome. Recent evidence has highlighted that AS has an increasingly crucial role in cancer. Nonetheless, the mechanisms underlying AS and its dysregulation in hepatocellular carcinoma (HCC) remain elusive. Here, we report that the expression of RNA-binding protein p54nrb /non-POU domain-containing octamer-binding protein (NONO) is frequently increased in patients with HCC and is associated with poor outcomes. APPROACH AND RESULTS: Knockdown of NONO significantly abolished liver cancer cell proliferation, migration, and tumor formation. RNA-sequencing revealed that NONO regulates MYC box-dependent interacting protein 1 (or bridging integrator 1 [BIN1]; also known as amphiphysin 2 3P9) exon 12a splicing. In the normal liver, BIN1 generates a short isoform (BIN1-S) that acts as a tumor suppressor by inhibiting the binding of c-Myc to target gene promoters. In HCC, NONO is highly up-regulated and produces a long isoform (BIN1-L, which contains exon 12a) instead of BIN1-S. High levels of BIN1-L promote carcinogenesis by binding with the protein polo-like kinase 1 to enhance its stability through the prevention of ubiquitin/proteasome-dependent cullin 3 degradation. Further analysis revealed that NONO promotes BIN1 exon 12a inclusion through interaction with DExH-box helicase 9 (DHX9) and splicing factor proline and glutamine-rich (SFPQ). Notably, frequent coexpression of DHX9-NONO-SFPQ is observed in patients with HCC. CONCLUSIONS: Taken together, our findings identify the DHX9-NONO-SFPQ complex as a key regulator manipulating the oncogenic splicing switch of BIN1 and as a candidate therapeutic target in liver cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo , Carcinogénesis , Carcinoma Hepatocelular/genética , Proteínas de Unión al ADN/fisiología , Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , Proteínas de Unión al ARN/fisiología , Proteínas Supresoras de Tumor/genética , Línea Celular Tumoral , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Isoformas de Proteínas
18.
Cancer Lett ; 469: 399-409, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31730902

RESUMEN

Metastasis is a core hallmark of cancer that leads to high mortality of cancer patients, especially in hepatocellular carcinoma (HCC). However, the underlying mechanisms of long noncoding RNAs (lncRNAs) in HCC metastasis remain largely unknown. We found that ID2-AS1 expression decreased in metastatic HCC cell lines and HCC tissues, and lower ID2-AS1 expression predicted reduced overall survival in HCC patients. ID2-AS1 significantly suppressed the migration, invasion and metastasis of HCC cells in vitro and in vivo. Mechanistically, ID2-AS1 regulated the transcription of its adjacent gene inhibitor of DNA binding 2 (ID2) by blocking the binding of histone deacetylase 8 (HDAC8) on the ID2 enhancer. Furthermore, ID2-AS1 and ID2 suppressed the Twist-induced epithelial-mesenchymal transition (EMT) in HCC cells. In addition, ID2 expression was also significantly decreased in HCC tissues and was positively correlated with ID2-AS1 in HCC tissues and HCC cell lines. Taken together, our findings demonstrated that ID2-AS1 regulated adjacent ID2 transcription by manipulating chromatin modification and that the newly identified ID2-AS1/ID2 axis suppressed HCC metastasis by regulating EMT processes. Our findings provide insights into the molecular mechanisms underlying the metastasis of HCC cells.


Asunto(s)
Carcinoma Hepatocelular/genética , Histona Desacetilasas/genética , Proteína 2 Inhibidora de la Diferenciación/genética , Neoplasias Hepáticas/genética , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Adulto , Anciano , Carcinoma Hepatocelular/patología , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia sin Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células Hep G2 , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Transducción de Señal/genética
19.
Oncogene ; 38(44): 6985-7001, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31409903

RESUMEN

The prognosis after curative resection of gastric cancer (GC) remains unsatisfactory, and thus, the development of treatments involving alternative molecular and genetic targets is critical. Circular RNAs (circRNAs), which are newly discovered molecules with key roles in the non-coding RNA network, have been identified as critical regulators in various cancers. Here, we aimed to determine the circRNA expression profile and to investigate the functional and prognostic significance of circRNA in GC. Using next-generation sequencing profiling, we first characterized an abundant circRNA in GC, hsa_circ_0008549, derived from the OSBPL10 gene and named it circOSBPL10. The expression of circOSBPL10 was found to be upregulated in GC tissues by quantitative RT-PCR, and silencing of circOSBPL10 significantly inhibited GC cell growth, migration, and invasion in multiple experiments. We further confirmed that miR-136-5p is a downstream target of circOSBPL10 using RNA pull-down and luciferase reporter assays. Rescue experiments confirmed that circOSBPL10 regulates biological functions in GC cells via a circOSBPL10-miR-136-5p-WNT2 axis. In vivo experiments showed that circOSBPL10 promotes tumor growth and metastasis in mice. Furthermore, the level of circOSBPL10 was observed to be a prognostic marker of the overall survival and disease-free survival of patients with GC. Taken together, our findings reveal that circOSBPL10 may serve as a new proliferation factor and prognostic marker in GC.


Asunto(s)
Biomarcadores de Tumor/genética , ARN Circular/genética , Receptores de Esteroides/genética , Neoplasias Gástricas/genética , Proliferación Celular/fisiología , Humanos , Metástasis de la Neoplasia , Pronóstico , Receptores de Esteroides/fisiología , Neoplasias Gástricas/patología
20.
Opt Express ; 27(10): 14121-14132, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163865

RESUMEN

The thermal phase noise in giant interferometric fiber optic gyroscopes (fiber length L > 10 km) and its impact on the detection sensitivity are theoretically derived and experimentally verified. It is confirmed that thermal phase noise cannot be overlooked for the giant IFOGs. Utilizing high order eigen frequency modulation can effectively suppress the walk-off component of thermal phase noise, but the residual part contributes to high-frequency range thus limits the detection bandwidth of giant IFOGs. The self-noise is experimentally demonstrated as 3.5 nrad/s/Hz at low frequencies and 5.2 nrad/s/Hz at 100 Hz in the IFOG with a 30-km single mode fiber coil. Discussions about the fiber characteristics on thermal phase noise are presented, which paves the way to the design of giant IFOGs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA