Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Food Chem ; 462: 140936, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39232273

RESUMEN

Aromatic amino acid oxidation products (AAAOPs) are newly discovered risk substances of thermal processes. Due to its significant polarity and trace level in food matrices, there are no efficient pre-treatment methods available to enrich AAAOPs. Herein, we proposed a magnetic cationic covalent organic framework (Fe3O4@EB-iCOF) as an adsorbent for dispersive magnetic solid-phase extraction (DMSPE). Benefiting from the unique charged characteristics of Fe3O4@EB-iCOF, AAAOPs can be enriched through electrostatic interaction and π-π interactions. Under the optimal DMSPE conditions, the combined HPLC-MS/MS method demonstrated good linearity (R2 ≥ 0.990) and a low detection limit (0.11-7.5 µg·kg-1) for AAAOPs. In addition, the method was applied to real sample and obtained satisfactory recoveries (86.8 % âˆ¼ 109.9 %). Especially, we applied this method to the detection of AAAOPs in meat samples and conducted a preliminarily study on its formation rules, which provides a reliable basis for assessing potential dietary risks.


Asunto(s)
Aminoácidos Aromáticos , Oxidación-Reducción , Extracción en Fase Sólida , Extracción en Fase Sólida/métodos , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/análisis , Aminoácidos Aromáticos/aislamiento & purificación , Espectrometría de Masas en Tándem , Estructuras Metalorgánicas/química , Calor , Contaminación de Alimentos/análisis , Cromatografía Líquida de Alta Presión , Animales , Adsorción , Carne/análisis , Alimentos Procesados
2.
Chemosphere ; 364: 143281, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243898

RESUMEN

Organophosphate esters (OPEs) are emerging pollutants, while data on their occurrence in foods and human dietary intake are limited. Based on the 6th China total diet study conducted in 2016-2019, this study implemented a comprehensive survey of OPEs in plant-derived foods of cereals, potatoes, legumes, fruits, vegetables, and further assessed dietary exposure from both plant- and animal-derived food. The sum concentrations of 15 OPEs in the plant-derived samples ranged from 0.567 to 106 ng/g ww. 2-Ethylhexyl diphenyl phosphate (EHDPP) (median: 1.14 ng/g ww) had the highest level in plant-derived foods, with a proportion of 35.6% in the total median OPEs. Regional distribution analysis showed a higher contamination of OPEs in plant-derived food from northern area of China. Estimated dietary intakes (EDIs) of ∑OPEs for Chinese population were from 109 ng/kg bw/day in Beijing to 1164 ng/kg bw/day in Gansu province, with mean and median of 296 and 222 ng/kg bw/day, respectively. Although animal-derived foods had higher levels of OPEs, plant-derived foods, specifically cereals, was the major source of dietary OPE intake. The EDIs were much lower than reference doses, which suggested the intakes of OPEs via food consumption could not cause significant health risks to the Chinese population at present.

3.
Food Chem ; 463(Pt 1): 141059, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39243618

RESUMEN

Heterocyclic aromatic amines (HAAs) are harmful byproducts in food heating. Therefore, exploring the prediction and generation patterns of HAAs is of great significance. In this study, genetic algorithm (GA) and support vector regression (SVR) are used to establish a prediction model of HAAs based on heating conditions, reveal the influence of heating temperature and time on the precursor and formation of HAAs in roast beef, and study the formation rules of HAAs under different processing conditions. Principal component analysis (PCA) showed that the effect on HAAs generation increases with the increase of heating temperature and time. The GA-SVR model exhibited near-zero absolute errors and regression correlation coefficients (R) close to 1 when predicting HAAs contents. The GA-SVR model can be applied for real-time monitoring of HAAs in grilled beef, providing technical support for controlling hazardous substances and intelligent processing of heat-processed meat products.

4.
Food Chem ; 463(Pt 1): 141113, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39265404

RESUMEN

The effect of Chlorella pyrenoidosa (CP) and Spirulina platensis (SP) at concentrations of 0 %-12 % on the properties of rice starch (RS) was investigated. Compared with pure RS, the addition of CP and SP powder decreased the viscosity, increased the gelatinization temperature, and promoted the retrogradation of RS gel. However, when CP was added at 12 % and SP at 8 %, retrogradation inhibition was reduced. At these concentrations, the relative crystallinity of the CP mixture increased by 57.37 %, whereas that of SP increased by 48.13 %. Scanning electron microscopy revealed that the addition of low amount of CP and SP reduced porosity. CP and SP powder facilitated the conversion of bound water to free water and contributed to the weakening of the viscoelasticity of the RS gel. CP powder likely had a more detrimental effect on the short-term storage properties of RS than SP powder. These results provide theoretical support for the development of RS-based products and the innovative utilization of microalgae.

5.
Sci Total Environ ; 953: 175980, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236823

RESUMEN

Assessing the bioaccessibility and bioavailability of cadmium (Cd) is crucial for effective evaluation of the exposure risk associated with intake of Cd-contaminated rice. However, limited studies have investigated the influence of gut microbiota on these two significant factors. In this study, we utilized in vitro gastrointestinal simulators, specifically the RIVM-M (with human gut microbial communities) and the RIVM model (without gut microbial communities), to determine the bioaccessibility of Cd in rice. Additionally, we employed the Caco-2 cell model to assess bioavailability. Our findings provide compelling evidence that gut microbiota significantly reduces Cd bioaccessibility and bioavailability (p<0.05). Notably, strong in vivo-in vitro correlations (IVIVC) were observed between the in vitro bioaccessibilities and bioavailabilities, as compared to the results obtained from an in vivo mouse bioassay (R2 = 0.63-0.65 and 0.45-0.70, respectively). Minerals such as copper (Cu) and iron (Fe) in the food matrix were found to be negatively correlated with Cd bioaccessibility in rice. Furthermore, the results obtained from the toxicokinetic (TK) model revealed that the predicted urinary Cd levels in the Chinese population, based on dietary Cd intake adjusted by in vitro bioaccessibility from the RIVM-M model, were consistent with the actual measured levels (p > 0.05). These results indicated that the RIVM-M model represents a potent approach for measuring Cd bioaccessibility and underscore the crucial role of gut microbiota in the digestion and absorption process of Cd. The implementation of these in vitro methods holds promise for reducing uncertainties in dietary exposure assessment.

6.
Mar Pollut Bull ; 207: 116880, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217867

RESUMEN

This study investigated the regional, seasonal, and species abundance and characteristics of microplastics (MPs) in bivalves from Qingdao, China and assessed the dietary exposure of MPs through bivalve consumption. The average abundance was 1.17 ± 1.07 items/individual or 0.17 ± 0.22 items/g wet weight. Fiber was the dominant shape (91.5 %). The average size of MPs was 995.63 ± 796.59 µm. Rayon, PE, and PET contributed mostly to the MPs composition. There were no significant regional or seasonal differences in MPs abundance (p > 0.05), while there were significant species differences (p < 0.05) when describing the abundance by wet weight. The estimated daily intakes of MPs through bivalve consumption by general population, consumer only population, and coastal residents in China were 3.32 × 10-3, 0.08, and 0.16 µg/kg BW, respectively. The exposure assessment method by converting the quantity of MPs into mass may facilitate the risk characterization in the future.


Asunto(s)
Bivalvos , Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Animales , China , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis
7.
Anal Chem ; 96(36): 14706-14713, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39207941

RESUMEN

Concerns regarding the hazard of the carcinogenic ethyl carbamate (EC) have driven attempts to exploit efficient, timely, straightforward, and economic assays for warning early food safety. Here, we proposed a novel molecularly imprinted polymer Co@MOF-MIP, with a high peroxidase (POD)-like activity and a bright blue fluorescence emission, to develop a versatile visual assay for colorimetric, fluorescent, and photothermal trimodal detection and logic gate outputting of EC. Briefly, the POD-like activity of Co@MOF-MIP made it to decompose H2O2 into ·OH for oxidizing colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue oxTMB, resulting in a 660 nm irradiated photothermal effect and bursting the blue fluorescence of Co@MOF-MIP via inner filter effect, observing a decreased fluorescence signal together with an increased colorimetric and 660 nm irradiated photothermal signals. However, EC could specifically fill the imprinted cavities of Co@MOF-MIP to block the catalytic substrates TMB and H2O2 out of Co@MOF-MIP for further reacting with the inside catalytic center of Co2+, resulting in the transformation suppressing of TMB into oxTMB, yielding an EC concentration-dependent trimodal responses in fluorescence signal enhancement, colorimetric, and 660 nm irradiated photothermal signal decreases. Assisted by the portable devices such as smartphones and hand-held thermal imagers, a visual onsite portable trimodal analytical platform was proposed for EC fast and accurate detection with the low detection limits of 1.64, 1.24, and 1.78 µg/L in colorimetric, fluorescent, and photothermal modes, respectively. Interestingly, these reactive events could be programmed by the classical Boolean logic gate analysis to offer a novel promising avenue for the big data Internet of Things monitoring and warning early residual EC in a more intelligent, dynamical, fast, and accurate manner, safeguarding food safety.


Asunto(s)
Colorimetría , Uretano , Uretano/química , Impresión Molecular , Estructuras Metalorgánicas/química , Cobalto/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Polímeros Impresos Molecularmente/química , Bencidinas/química
8.
Food Chem X ; 23: 101690, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39170065

RESUMEN

The emulsification stability of microalgae protein (MP) is limited to strongly alkaline conditions, restricting its applications in food processing. This study aims to investigate the capability of carboxymethyl chitosan (CMCS) to improve MP's emulsification stability over a wider pH range. Results indicated soluble MP-CMCS complexes formed at pH 2, 4, and 7, while aggregation of the complexes occurred at pH 8. The complexes stabilized emulsions exhibited smaller droplet sizes and higher absolute zeta potential at pH 2, 4, and 7 compared to pH 8. After 2 weeks of storage, emulsions remained stable at pH 2, 4, and 7, with significant delamination at pH 8. Laser confocal microscopy confirmed uniform droplet distribution at pH 2 and 7, with slight fusion at pH 4. The complexes stabilized emulsions exhibited higher viscosity and shear stress than MP stabilized emulsions at pH 2, 4, and 7. The stronger viscoelastic properties and higher storage moduli (G') values of MP-CMCS complexes under acidic and neutral conditions indicated stronger intermolecular interactions compared to alkaline conditions. The increase in G' and loss moduli (G") values for emulsions at pH 8 under stress highlighted the significant impact on network structure strength and viscosity in these emulsions. This study elucidated the binding interactions between MP and CMCS under various pH conditions, and demonstrated a feasible approach to improving MP's emulsification stability over a wider pH range.

9.
Food Chem X ; 23: 101697, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39176040

RESUMEN

Microalgae are a promising sustainable food source with high nutritional value and environmental benefits. This study investigated the presence of toxic metals and rare earth elements (REEs) in 68 microalgal-based food products and conducted a probabilistic risk assessment to evaluate potential health risks. The findings revealed high detection rates of REEs (80.96% to 100%) and heavy metals (83.82% to 100%), with REE concentrations ranging from 0.0055 to 0.5207 mg/kg. Heavy metals were detected at the following average concentrations: As (2.80 mg/kg) > Cr (1.27 mg/kg) > Pb (0.30 mg/kg) > Cd (0.20 mg/kg) > Hg (0.01 mg/kg). Carcinogenic risk analysis for Cd (3.004 × 10-3), Cr (1.484 × 10-3), and As (1.1283 × 10-2) indicated that 95th percentile values exceeded established safety thresholds (10-4). These findings highlight the critical need for stringent monitoring and the establishment of comprehensive regulatory frameworks for the safety of novel microalgae foods.

10.
Anal Chem ; 96(33): 13512-13521, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39110961

RESUMEN

Timely and efficient analysis of the fluorinated per- and polyfluoroalkyl substances (PFAS) in an atmospheric environment is critical to environmental pollution traceability, early warnings, and governance. Here, a portable, reliable, and intelligent digital monitoring device for onsite real-time dynamic analysis of atmospheric perfluorooctanoic acid (PFOA) is proposed. The sensing mechanism is attributed to the oxidase-like activity of PtCoNPs@g-C3N4 that is reversely regulated by the surface modification of a PFOA-recognizable DNA aptamer, engineering a PFOA-activated oxidase-like activity of nanozyme (Apt-PtCoNPs@g-C3N4) to combine the nonfluorescence o-phenylenediamine (OPD) as the dual-modality response system. The present PFOA interacts with its DNA aptamer and dissociates from the surface of Apt-PtCoNPs@g-C3N4, restoring the oxidase-like activity of PtCoNPs@g-C3N4 to oxidize OPD into yellow fluorescence 2,3-diphenylaniline (DAP), thereby observing a PFOA-triggered colorimetric as well as fluorescence dual-modality change. Then, a hydrogel kit-programmed Apt-PtCoNPs@g-C3N4 + OPD system is used as the sensitive element to incorporate into this homemade portable device, automatically gathering and processing the PFOA-triggered hydrogel colorimetric and fluorescence image gray values by our self-weaving software, ultimately realizing the onsite real-time dynamic analysis of atmospheric PFOA surrounding a fluorochemical production plant. This work provides a direction and theoretical foundation for designing portable onsite screening devices that cater to other atmospheric contaminants detection requirements.


Asunto(s)
Aptámeros de Nucleótidos , Caprilatos , Fluorocarburos , Aptámeros de Nucleótidos/química , Fluorocarburos/química , Fluorocarburos/análisis , Caprilatos/análisis , Caprilatos/química , Oxidorreductasas/metabolismo , Técnicas Biosensibles/métodos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Límite de Detección
11.
Environ Int ; 191: 108969, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39180774

RESUMEN

Emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) pose potential health risks to humans through dietary exposure. However, research into their mechanisms of toxicity is limited, with a lack of comprehensive toxicological data. This study investigates from a hepatic lipid metabolism perspective, establishing a more precise and reliable 3D HepaRG hepatocyte spheroid model as an alternative for toxicity assessment. Utilizing physiological indices, histopathological analyses, lipidomics, and molecular docking techniques, it comprehensively elucidates the effects of ENNs and BEA on hepatic lipid homeostasis and their molecular toxicological mechanisms. Our findings indicate that ENNs and BEA impact cellular viability and biochemical functions, significantly altering lipid metabolism pathways, particularly those involving glycerophospholipids and sphingolipids. Molecular docking has demonstrated strong binding affinity of ENNs and BEA with key enzymes in lipid metabolism such as Peroxisome Proliferator-Activated Receptor α (PPARα) and Cytosolic Phospholipase A2 (cPLA2), revealing the mechanistic basis for their hepatotoxic effects and potential to impair liver function and human health. These insights enhance our understanding of the potential hepatotoxicity of such fungal toxins and lay a foundation for the assessment of their health risks.


Asunto(s)
Depsipéptidos , Hepatocitos , Metabolismo de los Lípidos , Depsipéptidos/toxicidad , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Simulación del Acoplamiento Molecular , Micotoxinas/toxicidad , Micotoxinas/metabolismo , Supervivencia Celular/efectos de los fármacos
12.
Sci Rep ; 14(1): 19813, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191901

RESUMEN

Thyroid nodule (TN) has been becoming a great concern worldwide due to its high incidence. Although some studies have reported associations between trace elements exposure and the risk of TNs, the linkage was not inconclusive. The present study aimed to identify the association of selected serum trace elements (Ca, Mg, V, Fe, Co, Cu, Zn, Se, Mn and Mo) with TNs among general adults. A cross-sectional study was conducted in January 2021 in Chengdu, China. 1282 subjects completed the questionnaire and gave at least one human biological material after an overnight fast, venous blood, and urine, including 377 TN participants defined through ultrasound. Various trace elements in serum specimens were determined by inductively coupled plasma mass spectrometry. Thyroid functions were tested by chemiluminescent microparticle immunoassay (CMIA). The associations between trace elements levels and the risk of TNs were examined by restricted cubic splines (RCS) regression and bayesian kernel machine regression (BKMR) models. TNs were more common in females (P < 0.001) and in the elderly (P < 0.001) and that they were also frequently associated with fertility, marital status, annual household income, drinking, anxiety, vitamin supplement, tea consumption, hypertension and hyperlipidemia. After adjusting for confounders by a propensity score matching model, the association between trace elements concentrations and TNs risk was found to be statistically insignificant in the RCS (P for nonlinear > 0.05) and BKMR models. FT3 or T4 (total or free) increased significantly with increasing total trace elements mixture levels. In TI-RADS-4 TN subjects, TPO-Ab level increased significantly with increasing total trace elements mixture levels in the high-dose range. Ca, Zn, Mo at their 75th percentile showed positive individual effects on TPO-Ab, which was examined to be interactive. The detection of trace elements for TNs in general adults may be of no significance, but once individuals classified as TI-RADS-4 TNs are detected with abnormal TPO-Ab, Ca, Zn and Mo level are recommended to measure. The substantive association on it still needs to be continuously explored in the future.


Asunto(s)
Autoanticuerpos , Nódulo Tiroideo , Oligoelementos , Humanos , Femenino , Oligoelementos/sangre , Masculino , Autoanticuerpos/sangre , Persona de Mediana Edad , Nódulo Tiroideo/sangre , Nódulo Tiroideo/diagnóstico por imagen , Estudios Transversales , Adulto , Yoduro Peroxidasa/inmunología , Glándula Tiroides/diagnóstico por imagen , Glándula Tiroides/patología , Anciano , China/epidemiología
13.
Environ Int ; 190: 108911, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067189

RESUMEN

Discovery of emerging pollutants in breast milk will be helpful for understanding the hazards to human health. However, it is difficult to identify key compounds among thousands present in complex samples. In this study, a method for screening compounds with bioaccumulation potential was developed. The method can decrease the number of compounds needing structural identification because the partitioning properties of bioaccumulative compounds can be mapped onto GC×GC chromatograms through their retention behaviors. Twenty pooled samples from seven provinces in China were analyzed. 1,286 compounds with bioaccumulation potential were selected from over 3,000 compounds. Sixty-two compounds, including aromatic compounds, phthalates, and phenolics etc., were identified with a high level of confidence and then quantified. Among them, twenty-seven compounds were found for the first time in breast milk. Three phthalate plasticizers and two phenolic antioxidants were found in significantly higher concentrations than other compounds. A toxicological priority index approach was applied to prioritize the compounds considering their concentrations, detection frequencies and eight toxic effects. The prioritization indicated that 13 compounds, including bis(2-ethylhexyl) phthalate, dibutyl phthalate, 1,3-di-tert-butylbenzene, phenanthrene, 2,6-di-tert-butyl-1,4-benzoquinone, 2,4-di-tert-butylphenol, and others, showed higher health risks. Meanwhile, some compounds with high risk for a particular toxic effect, such as benzothiazole and geranylacetone, were still noteworthy. This study is important for assessing the risks of human exposure to organic compounds.


Asunto(s)
Leche Humana , Ácidos Ftálicos , Humanos , Leche Humana/química , China , Ácidos Ftálicos/análisis , Femenino , Cromatografía de Gases , Contaminantes Ambientales/análisis , Monitoreo del Ambiente/métodos , Plastificantes/análisis
14.
Sci Total Environ ; 950: 175134, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39084380

RESUMEN

Acrylamide exposure has become an emerging environmental and food safety issue, and its toxicity poses a potential threat to public health worldwide. However, limited studies have paid attention to the detrimental effects of parental exposure to acrylamide on the neurodevelopment in zebrafish offspring. In this study, the embryos were life-cycle exposed to acrylamide (0.125 and 0.25 mM) for 180 days. Subsequently, these zebrafish (F0) were allowed to mate, and their offspring (F1) were collected to culture in clean water from embryos to adults. We employed developmental and morphological observations, behavioral profiles, metabolomics analyses, and transcriptional level examinations to investigate the transgenerational neurotoxicity with parental exposure to acrylamide. Our results showed that parental exposure to acrylamide harms the birth, development, and behavior characterization of the F1 zebrafish larvae, including poor egg quality, increased mortality rates, abnormal heart rates, slowed swimming activity, and heightened anxiety behavior, and continuously disturbs mental health in F1 adult zebrafish. The transcriptional analysis showed that parental chronic exposure to acrylamide deteriorates the neurodevelopment in F1 larvae. In addition, metabolomics analyses revealed that sphingolipid metabolism disruption may be associated with the observed abnormal development and behavioral response in unexposed F1 offspring. Overall, the present study provides pioneer evidence that acrylamide induces transgenerational neurotoxicity via targeting and disrupting sphingolipid metabolism, which reveals intergenerational transmission of acrylamide exposure and unravels its spatiotemporal toxicological effect on neurodevelopment.


Asunto(s)
Acrilamida , Esfingolípidos , Pez Cebra , Animales , Acrilamida/toxicidad , Esfingolípidos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Femenino , Exposición Materna/efectos adversos , Exposición Paterna/efectos adversos , Conducta Animal/efectos de los fármacos
15.
Front Microbiol ; 15: 1432320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044954

RESUMEN

The emergence and widespread of tigecycline resistance undoubtedly poses a serious threat to public health globally. The exploration of combination therapies has become preferred antibacterial strategies to alleviate this global burden. In this study, tigecycline-resistant tet(X4)-positive Escherichia coli were selected for adjuvant screening. Interestingly, 9-aminominocycline (9-AMC), one of the tigecycline metabolites, exhibits synergistic antibacterial activity with tigecycline using checkerboard assay. The efficacy in vitro and in vivo was evaluated, and the synergistic mechanism was further explored. The results suggested that 9-AMC combined with tigecycline could inhibit the growth of antibiotic resistant bacteria, efficiently retard the evolution of tet(X4) gene and narrow the drug mutant selection window. In addition, the combination of tigecycline and 9-AMC could destroy the normal membrane structure of bacteria, inhibit the formation of biofilm, remarkably reduce the level of intracellular ATP level, and accelerate the oxidative damage of bacteria. Furthermore, 9-AMC is more stable in the bind of Tet(X4) inactivating enzyme. The transcriptomics analysis revealed that the genes related to the 9-AMC and tigecycline were mainly enriched in ABC transporters. Collectively, the results reveal the potentiation effects on tigecycline and the probability of 9-AMC as a novel tigecycline adjuvant against tet(X4)-positive Escherichia coli, which provides new insights for adjuvant screening.

16.
China CDC Wkly ; 6(24): 563-567, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38934023

RESUMEN

What is already known about this topic?: Chloropropanols, along with their fatty acid esters and glycidyl fatty acid esters (GEs), are prevalent contaminants in a variety of processed foods, posing potential health risks to humans. What is added by this report?: In the Sixth China Total Diet Study (TDS), 3-monochloropropane-1,2-diol esters (3-MCPD esters) and GEs were identified as the predominant chloropropanols and their esters in composite food samples. Vegetables (47.0%) and cereals (15.4%) were the major contributors to exposure among the 12 food categories evaluated. What are the implications for public health practice?: The Sixth China TDS highlighted concerns regarding potential health risks associated with dietary exposure to GEs. This study underscores the need for further attention in devising practical strategies to mitigate dietary exposure to GEs.

18.
Foods ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928776

RESUMEN

Baijiu is a renowned Chinese distilled liquor, notable for its distinctive flavor profile and intricate production process, which prominently involves fermentation and distillation. Ethyl carbamate (EC), a probable human carcinogen, can be potentially formed during these procedures, thus prompting significant health concerns. Consequently, the contamination of EC during Baijiu production has become an increasingly pressing issue. In this study, we developed a rapid and easily operable immunoassay for determining EC in the fermented materials used in Baijiu production. The development of a high-quality antibody specific to EC facilitated a streamlined analytical procedure and heightened method sensitivity. Furthermore, we systematically evaluated other essential parameters. Following optimization, the method achieved an IC50 value of 11.83 µg/kg, with negligible cross-reactivity against EC analogs. The recovery study demonstrated the method's good accuracy and precision, with mean recovery rates ranging from 86.0% to 105.5% and coefficients of variation all below 10%. To validate the feasibility of the technique, we collected and analyzed 39 samples simultaneously using both the proposed immunoassay and confirmatory gas chromatography-mass spectrometry (GC-MS). A robust correlation was observed between the results obtained from the two methods (R2 > 0.99). The detected EC levels ranged from 2.36 µg/kg to 7.08 µg/kg, indicating an increase during the fermentation process.

19.
Food Funct ; 15(14): 7619-7630, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940701

RESUMEN

Copper II oxide nanoparticles (CuO NPs), a kind of widely used nanomaterial, have been detected in food and the environment, which has aroused widespread public concern. Recently, increasing data have suggested that intestinal microecology is closely related to immune homeostasis. However, the intestinal immunotoxicity induced by CuO NPs through intestinal microbiota is still unknown. Therefore, in this study, zebrafish were exposed to CuO NPs to explore intestinal immunotoxicity by evaluating physiological indicators, intestinal tissue injury, antioxidant enzyme activities, gene expression of immune factors, and changes in intestinal microbiota and its metabolites (short-chain fatty acids (SCFAs) and lipopolysaccharides (LPS)). The results revealed that the intestinal immunotoxicity of CuO NPs was mediated by the impact on intestinal microbiota and its metabolite levels. Specifically, changes were observed in the abundance of microbes that participated in the metabolism of SCFAs and LPS. The reduction in acetic acid, propionic acid and valeric acid upregulated GPR84 expression, and the decline in LPS levels further resulted in the suppression of the key immune regulatory pathways TLR4/MyD88/NF-κB, ultimately leading to intestinal immunotoxicity. This study would provide a scientific basis for the risk assessment of CuO NPs and a new perspective for research on the immunotoxicity of nanoparticles.


Asunto(s)
Cobre , Disbiosis , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Pez Cebra , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Disbiosis/inducido químicamente , Disbiosis/microbiología , Cobre/toxicidad , Ácidos Grasos Volátiles/metabolismo , Nanopartículas del Metal/toxicidad , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Nanopartículas/toxicidad , Lipopolisacáridos
20.
Sci Total Environ ; 941: 173511, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825210

RESUMEN

4-Hydroxychlorothalonil (4-OH CHT), the main metabolite of chlorothalonil and the most widely used fungicide, has been frequently detected in human samples during monitoring. 4-OH CHT may exhibit higher toxicity and persistence in the environment compared to its prototype. In this study, a total of 540 paired serum and breast milk samples from pregnant women in three provinces in China were monitored for contaminant residues. 4-OH CHT was analyzed in the samples using ultra high-performance liquid chromatography - high-resolution mass spectrometry with a detection limit of 20 ng/L. The study investigated the effects of demographic factors, such as BMI, region of residence, and education level, on the levels of 4-OH CHT residues in serum and breast milk. Among the three provinces, the highest median concentration of 4-OH CHT in serum samples was observed in Hebei (1.04 × 103 ng/L), while the highest median concentration of 4-OH CHT in breast milk samples was observed in Hubei and Guangdong (491 ng/L). Multiple linear regression was used to investigate the significant positive correlation between 4-OH CHT in serum and breast milk (p = 0.000) after adjusting for personal characteristics. Based on this, the study further explored the influencing factors of transfer efficiencies (TEs) in conjunction with the individual TEs and the personal characteristics of the participants. Our results demonstrated that the age of the volunteers and their exercise habits had an effect on TEs, but further studies are needed to determine whether exercise leads to an increase in TEs.


Asunto(s)
Fungicidas Industriales , Leche Humana , Nitrilos , Leche Humana/química , Leche Humana/metabolismo , Humanos , Femenino , China , Nitrilos/análisis , Adulto , Estudios Transversales , Fungicidas Industriales/análisis , Embarazo , Exposición Materna/estadística & datos numéricos , Ciudades , Monitoreo del Ambiente , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA