Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(44): 12535-12540, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020396

RESUMEN

Achieving a circular plastics economy is one of our greatest environmental challenges, yet conventional mechanical recycling remains inadequate for thermoplastics and incompatible with thermosets. The next generation of plastic materials will be designed with the capacity for degradation and recycling at end-of-use. To address this opportunity in the burgeoning technologies of 3D printing and photolithography, we report a modular system for the production of degradable and recyclable thermosets via photopolymerization. The polyurethane backbone imparts robust, elastic, and tunable mechanical properties, while the use of hemiacetal ester linkages allows for facile degradation under mild acid. The synthetic design based on hemiacetal esters enables simple purification to regenerate a functional polyurethane diol.

2.
ACS Appl Mater Interfaces ; 15(17): 21384-21393, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37071537

RESUMEN

Graphene oxide/polymer composite water filtration membranes were developed via coalescence of graphene oxide (GO) stabilized Pickering emulsions around a porosity-generating polymer. Triptycene poly(ether ether sulfone)-CH2NH2:HCl polymer interacts with the GO at the water-oil interface, resulting in stable Pickering emulsions. When they are deposited and dried on polytetrafluoroethylene substrate, the emulsions fuse to form a continuous GO/polymer composite membrane. X-ray diffraction and scanning electron microscopy demonstrate that the intersheet spacing and thickness of the membranes increased with increasing polymer concentration, confirming the polymer as the spacer between the GO sheets. The water filtration capability of the composite membranes was tested by removing Rose Bengal from water, mimicking separations of weak black liquor waste. The composite membrane achieved 65% rejection and 2500 g m-2 h-1 bar-1. With high polymer and GO loading, composite membranes give superior rejection and permeance performance when compared with a GO membrane. This methodology for fabrication membranes via GO/polymer Pickering emulsions produces membranes with a homogeneous morphology and robust chemical separation strength.

3.
JACS Au ; 2(7): 1610-1615, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35911464

RESUMEN

Bottlebrush polymers with flexible backbones and rigid side chains have shown ultrahigh CO2 permeability and plasticization resistance for membrane-based gas separations. To date, this class of polymers has only been studied with polydisperse side chains. Herein, we report gas transport properties of a methoxy (OMe) functionalized polymer synthesized via ring-opening metathesis polymerization (ROMP) with uniform side-chain lengths ranging from n = 2 to 5 repeat units to elucidate the role of both side-chain length and dispersity on gas transport properties and plasticization resistance. As side-chain length increased, both Brunauer-Emmett-Teller (BET) surface area and gas permeability increased with minimal losses in gas selectivity. Increased plasticization resistance was also observed with increasing side-chain length, which can be attributed to increased interchain rigidity from longer side chains. Controlling the side-chain length provides an effective strategy to rationally control and optimize the performance of ROMP polymers for CO2-based gas separations.

4.
ACS Nano ; 14(9): 11605-11612, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32865975

RESUMEN

The capping reagent plays an essential role in the functional properties of gold nanoparticles (AuNPs). Multiple stimuli-responsive materials are generated via diverse surface modification. The ability of the organic ligand shell on a gold surface to create a porous shell capable of binding small molecules is demonstrated as an approach to detect molecules, such as methane, that would be otherwise difficult to sense. Thiols are the most studied capping ligands of AuNPs used in chemiresistors. Phosphine capping groups are usually seen as stabilizers in synthesis and catalysis. However, by virtue of the pyramidal shape of triarylphosphines, they are natural candidates to create intrinsic voids within the ligand shell of AuNPs. In this work, surface-functionalized (capped) AuNPs with chelating phosphine ligands are synthesized via two synthetic routes, enabling chemiresistive methane gas detection at sub-100 ppm levels. These AuNPs are compared to thiol-capped AuNPs, and studies were undertaken to evaluate structure-property relationships for their performance in the detection of hydrocarbons. Polymer overcoatings applied to the conductive networks of the functionalized AuNP arrays were shown to reduce resistivity by promoting the formation of conduction pathways with decreased core-core distance between nanoparticles. Observations made in the context of developing methane sensors provide insight relevant to applications of phosphine or phosphine-containing surface groups in functional AuNP materials.

5.
J Am Chem Soc ; 141(45): 18152-18159, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31682441

RESUMEN

A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm-1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g-1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm-2 (0.45 W cm-2 from a silver-based cathode) and stable performance throughout 400 h tests.

6.
J Am Chem Soc ; 141(32): 12498-12501, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31365245

RESUMEN

The postpolymerization modification of polymers produced by living polymerization is an attractive method to create precision nanomaterials. We describe the living cationic ring-opening polymerization of a 2-alkylthio-2-oxazoline to furnish a polythiocarbamate. The polythiocarbamate is activated toward substitution by N- and S-nucleophiles via oxidation of the S to an SO2. Mild substitution conditions provide broad functional group tolerance, constituting a versatile postpolymerization modification platform with access to a diversity of polyureas and polythiocarbamates. We further demonstrate the utility of this strategy by synthesizing and functionalizing block copolymers.

7.
ACS Sens ; 4(8): 2101-2108, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31339035

RESUMEN

Successful identification of complex odors by sensor arrays remains a challenging problem. Herein, we report robust, category-specific multiclass-time series classification using an array of 20 carbon nanotube-based chemical sensors. We differentiate between samples of cheese, liquor, and edible oil based on their odor. In a two-stage machine-learning approach, we first obtain an optimal subset of sensors specific to each category and then validate this subset using an independent and expanded data set. We determined the optimal selectors via independent selector classification accuracy, as well as a combinatorial scan of all 4845 possible four selector combinations. We performed sample classification using two models-a k-nearest neighbors model and a random forest model trained on extracted features. This protocol led to high classification accuracy in the independent test sets for five cheese and five liquor samples (accuracies of 91% and 78%, respectively) and only a slightly lower (73%) accuracy on a five edible oil data set.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Aprendizaje Automático , Odorantes/análisis , Aceites de Plantas/análisis , Humanos
8.
J Org Chem ; 80(24): 12740-5, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26560445

RESUMEN

We report a divergent synthetic strategy and novel design concept that exploit molecular mixtures to create amorphous organic charge-transporting glasses. Using Suzuki-Miyaura cross-coupling reactions, we synthesized well-defined molecular mixtures in a single step. These solution-processable materials are noncrystalline and show good thermal and morphological stabilities. Moreover, they have robust hole and electron mobilities, which make them excellent candidate materials for organic light-emitting diodes. Our general strategy enables the facile synthesis of noncrystalline materials with well-controlled electronic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...