Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631549

RESUMEN

Because the mechanotransduction by stromal stiffness stimulates the rupture and repair of the nuclear envelope in pancreatic progenitor cells, accumulated genomic aberrations are under selection in the tumor microenvironment. Analysis of cell growth, micronuclei, and γH2AX foci links to mechanotransduction pressure in vivo during serial orthotopic passages of mouse KrasLSL-G12D/+;Trp53flox/flox;Pdx1-Cre (KPC) cancer cells in the tumor and in migrating through the size-restricted 3-µm micropores. To search for pancreatic cancer cell of origin, analysis of single-cell data sets revealed that the extracellular matrix shapes an alternate route of acinar-ductal transdifferentiation of acinar cells into a central hub of elegantly restrained topoisomerase II α (TOP2A)-overexpressing cancer cells that spread out as unique cancer clusters with copy number amplifications in MYC-PTK2 (protein tyrosine kinase 2) locus and PIK3CA. High-PTK2 expression is associated with 171 differentially methylated CpG loci, 319 differentially expressed genes, and poor overall survival in patients with The Cancer Genome Atlas-PAAD. Abolished RGD-integrin signaling by disintegrin KG blocked the PTK2 phosphorylation, increased cancer apoptosis, decreased VAV1 expression, and prolonged overall survival in the KPC mice. Decreases of α-smooth muscle actin deposition in the CD248 knockout KPC mice remodel the tissue stroma and down-regulated TOP2A expression in the epithelium. In summary, stromal stiffness induces the onset of cells of origin of cancer by ectopic TOP2A expression, and the genomic amplification of MYC-PTK2 locus via alternative transdifferentiation of pancreatic progenitor cells is the vulnerability useful for disintegrin KG treatment against cells-of-origin cancer.

2.
Anticancer Res ; 44(4): 1353-1364, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538001

RESUMEN

Ataxia-telangiectasia mutated (ATM) is a pivotal protein with versatile kinase activity that responds to DNA damage. While its well-established role as a DNA repair protein is widely recognized, the understanding of its noncanonical functions in ovarian cancer remains limited. Numerous studies have investigated the potential of targeting ATM for ovarian cancer treatment. In addition to its involvement in homologous recombination repair (HRR), an increasing body of research suggests that ATM plays a role in cellular metabolism and adaptive immunity. This review focuses on the current evidence and provides a perspective on how targeting ATM in ovarian cancer can address HRR-deficient genotypes, influence macropinocytosis, and enhance immune checkpoint blockade (ICB) therapy. It underscores the diverse avenues through which targeting ATM is a potential tailored treatment for ovarian cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias Ováricas , Femenino , Humanos , Inmunidad Adaptativa , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...