Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Psychiatry ; 29(2): 369-386, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38102482

RESUMEN

Understanding the role of small, soluble aggregates of beta-amyloid (Aß) and tau in Alzheimer's disease (AD) is of great importance for the rational design of preventative therapies. Here we report a set of methods for the detection, quantification, and characterisation of soluble aggregates in conditioned media of cerebral organoids derived from human iPSCs with trisomy 21, thus containing an extra copy of the amyloid precursor protein (APP) gene. We detected soluble beta-amyloid (Aß) and tau aggregates secreted by cerebral organoids from both control and the isogenic trisomy 21 (T21) genotype. We developed a novel method to normalise measurements to the number of live neurons within organoid-conditioned media based on glucose consumption. Thus normalised, T21 organoids produced 2.5-fold more Aß aggregates with a higher proportion of larger (300-2000 nm2) and more fibrillary-shaped aggregates than controls, along with 1.3-fold more soluble phosphorylated tau (pTau) aggregates, increased inflammasome ASC-specks, and a higher level of oxidative stress inducing thioredoxin-interacting protein (TXNIP). Importantly, all this was detectable prior to the appearance of histological amyloid plaques or intraneuronal tau-pathology in organoid slices, demonstrating the feasibility to model the initial pathogenic mechanisms for AD in-vitro using cells from live genetically pre-disposed donors before the onset of clinical disease. Then, using different iPSC clones generated from the same donor at different times in two independent experiments, we tested the reproducibility of findings in organoids. While there were differences in rates of disease progression between the experiments, the disease mechanisms were conserved. Overall, our results show that it is possible to non-invasively follow the development of pathology in organoid models of AD over time, by monitoring changes in the aggregates and proteins in the conditioned media, and open possibilities to study the time-course of the key pathogenic processes taking place.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Síndrome de Down , Células Madre Pluripotentes Inducidas , Organoides , Proteínas tau , Humanos , Organoides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Proteínas tau/metabolismo , Síndrome de Down/metabolismo , Síndrome de Down/genética , Síndrome de Down/patología , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Trisomía/genética , Estrés Oxidativo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Medios de Cultivo Condicionados , Microscopía Fluorescente/métodos
3.
Cell Rep Methods ; 3(6): 100499, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426747

RESUMEN

We developed the aggregate characterization toolkit (ACT), a fully automated computational suite based on existing and widely used core algorithms to measure the number, size, and permeabilizing activity of recombinant and human-derived aggregates imaged with diffraction-limited and super-resolution microscopy methods at high throughput. We have validated ACT on simulated ground-truth images of aggregates mimicking those from diffraction-limited and super-resolution microscopies and showcased its use in characterizing protein aggregates from Alzheimer's disease. ACT is developed for high-throughput batch processing of images collected from multiple samples and is available as an open-source code. Given its accuracy, speed, and accessibility, ACT is expected to be a fundamental tool in studying human and non-human amyloid intermediates, developing early disease stage diagnostics, and screening for antibodies that bind toxic and heterogeneous human amyloid aggregates.


Asunto(s)
Enfermedad de Alzheimer , Agregado de Proteínas , Humanos , Enfermedad de Alzheimer/diagnóstico , Amiloide , Proteínas Amiloidogénicas , Algoritmos
4.
Biophys J ; 121(22): 4280-4298, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36230002

RESUMEN

Mutations in the TP53 gene are common in cancer with the R248Q missense mutation conferring an increased propensity to aggregate. Previous p53 aggregation studies showed that, at micromolar concentrations, protein unfolding to produce aggregation-prone species is the rate-determining step. Here we show that, at physiological concentrations, aggregation kinetics of insect cell-derived full-length wild-type p53 and p53R248Q are determined by a nucleation-growth model, rather than formation of aggregation-prone monomeric species. Self-seeding, but not cross-seeding, increases aggregation rate, confirming the aggregation process as rate determining. p53R248Q displays enhanced aggregation propensity due to decreased solubility and increased aggregation rate, forming greater numbers of larger amorphous aggregates that disrupt lipid bilayers and invokes an inflammatory response. These results suggest that p53 aggregation can occur under physiological conditions, a rate enhanced by R248Q mutation, and that aggregates formed can cause membrane damage and inflammation that may influence tumorigenesis.


Asunto(s)
Genes p53 , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Cinética , Mutación , Desplegamiento Proteico , Agregado de Proteínas
5.
Nat Protoc ; 17(11): 2570-2619, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36002768

RESUMEN

Single-molecule localization microscopy (SMLM) leverages the power of modern optics to unleash ultra-precise structural nanoscopy of complex biological machines in their native environments as well as ultra-sensitive and high-throughput medical diagnostics with the sensitivity of a single molecule. To achieve this remarkable speed and resolution, SMLM setups are either built by research laboratories with strong expertise in optical engineering or commercially sold at a hefty price tag. The inaccessibility of SMLM to life scientists for technical or financial reasons is detrimental to the progress of biological and biomedical discoveries reliant on super-resolution imaging. In this work, we present the NanoPro, an economic, high-throughput, high-quality and easy-to-assemble SMLM for super-resolution imaging. We show that our instrument performs similarly to the most expensive, best-in-class commercial microscopes and rivals existing open-source microscopes at a lower price and construction complexity. To facilitate its wide adoption, we compiled a step-by-step protocol, accompanied by extensive illustrations, to aid inexperienced researchers in constructing the NanoPro as well as assessing its performance by imaging ground-truth samples as small as 20 nm. The detailed visual instructions make it possible for students with little expertise in microscopy engineering to construct, validate and use the NanoPro in <1 week, provided that all components are available.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Humanos , Imagen Individual de Molécula/métodos
6.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1133-1139, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35866602

RESUMEN

The coronavirus papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for viral polypeptide cleavage and the deISGylation of interferon-stimulated gene 15 (ISG15), which enable it to participate in virus replication and host innate immune pathways. Therefore, PLpro is considered an attractive antiviral drug target. Here, we show that parthenolide, a germacrane sesquiterpene lactone, has SARS-CoV-2 PLpro inhibitory activity. Parthenolide covalently binds to Cys-191 or Cys-194 of the PLpro protein, but not the Cys-111 at the PLpro catalytic site. Mutation of Cys-191 or Cys-194 reduces the activity of PLpro. Molecular docking studies show that parthenolide may also form hydrogen bonds with Lys-192, Thr-193, and Gln-231. Furthermore, parthenolide inhibits the deISGylation but not the deubiquitinating activity of PLpro in vitro. These results reveal that parthenolide inhibits PLpro activity by allosteric regulation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas Similares a la Papaína de Coronavirus , Antivirales/farmacología , Humanos , Interferones , Lactonas , Simulación del Acoplamiento Molecular , Papaína/química , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2 , Sesquiterpenos , Sesquiterpenos de Germacrano , Ubiquitina/metabolismo
7.
Int J Biol Sci ; 18(6): 2515-2526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35414773

RESUMEN

Rationale: In multiple myeloma (MM), the activities of non-homologous end joining (NHEJ) and homologous recombination repair (HR) are increased compared with healthy controls. Whether and how IKZF1 as an enhancer of MM participates in the DNA repair pathway of tumor cells remains elusive. Methods: We used an endonuclease AsiSI-based system and quantitative chromatin immunoprecipitation assay (qChIP) analysis to test whether IKZF1 is involved in DNA repair. Immunopurification and mass spectrometric (MS) analysis were performed in MM1.S cells to elucidate the molecular mechanism that IKZF1 promotes DNA damage repair. The combination effect of lenalidomide or USP7 inhibitor with PARP inhibitor on cell proliferation was evaluated using MM cells in vitro and in vivo. Results: We demonstrate that IKZF1 specifically promotes homologous recombination DNA damage repair in MM cells, which is regulated by its interaction with CtIP and USP7. In this process, USP7 could regulate the stability of IKZF1 through its deubiquitinating activity. The N-terminal zinc finger domains of IKZF1 and the ubiquitin-like domain of USP7 are necessary for their interaction. Furthermore, targeted inhibition IKZF1 or USP7 could sensitize MM cells to PARP inhibitor treatment in vitro and in vivo. Conclusions: Our findings identify USP7 as a deubiquitinating enzyme for IKZF1 and uncover a new function of IKZF1 in DNA damage repair. In translational perspective, the combination inhibition of IKZF1 or USP7 with PARP inhibitor deserves further evaluation in clinical trials for the treatment of MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Antineoplásicos/farmacología , Reparación del ADN/genética , Endodesoxirribonucleasas , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN por Recombinación , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo
8.
Biophys Rep (N Y) ; 2(1): None, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35299715

RESUMEN

Super-resolution microscopy allows complex biological assemblies to be observed with remarkable resolution. However, the presence of uneven Gaussian-shaped illumination hinders its use in quantitative imaging or high-throughput assays. Methods developed to circumvent this problem are often expensive, hard to implement, or not applicable to total internal reflection fluorescence imaging. We herein demonstrate a cost-effective method to overcome these challenges using a small square-core multimodal optical fiber as the coupler. We characterize our method with synthetic, recombinant, and cellular systems imaged under total internal reflection fluorescence and highly inclined and laminated optical sheet illuminations to demonstrate its ability to produce highly uniform images under all conditions.

9.
Chem Biol Interact ; 351: 109770, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34861246

RESUMEN

INTRODUCTION: Despite the rapid progress in the diagnosis and treatment, the prognosis of some types of non-Hodgkin's lymphoma (NHL), especially those with double-hit or double-expressor genotypes, remains poor. Novel targets and compounds are needed to improve the prognosis of NHL. METHODS: We investigated the effect of ZCL-082, a novel boron-containing compound with anti-proliferating activity against ovarian cancer cells, on NHL cells and human peripheral blood mononuclear cells by CCK-8 assay, Annexin V/PI double staining assay, RH123/PI double staining, Western blot, and immunohistochemistry. NF-κB pathway activity was analyzed using luciferase reporter gene assay and RT-PCR. The location of p65 was detected by immunofluorescence and nuclear/cytoplasmic fractionation assay. Immunoprecipitation and chromatin immunoprecipitation assays were used to detect the binding between p65 and p300. CETSA and molecular docking assay were carried out to test the interaction between ZCL-082 and p90 ribosomal S6 kinase 1 (RSK1). Kinase reaction was conducted to examine the inhibition of RSK1 kinase activity by ZCL-082. RESULTS: We found that ZCL-082 can induce the apoptosis of various NHL cell lines in vitro and in vivo. ZCL-082 significantly inhibits TNFα- or LPS-induced NF-κB activation without disturbing TNFα-induced IκBα degradation or the nuclear translocation and DNA-binding ability of p65. However, ZCL-082 markedly suppresses the phosphorylation of p65 on Ser536 and the interaction between p65 and p300. The overexpression of the phosphomimetic mutant of p65 at Ser536 partially abrogates ZCL-082-induced cell death. We further found that ZCL-082 directly binds to and inhibits the activity of RSK1. RSK1 can phosphorylate RelA/p65 on Ser536 and its overexpression is associated with the poor prognosis of lymphoma. The overexpression of RSK1 partially rescues ZCL-082-induced cell death. Molecular docking studies show that ZCL-082 fits well with the N-terminal kinase domain of RSK1. Furthermore, the combination of ZCL-082 and BCL-2 inhibitor ABT-199 has a synergistic apoptosis-inducing effect against double-hit lymphoma cell line OCI-Ly10. DISCUSSION: We found that ZCL-082 is a highly promising anti-lymphoma compound that targets RSK1 and interferes with the RSK1/NF-κB signaling pathway. The combination of ZCL-082 with BCL-2 inhibitor may represent a novel strategy to improve the outcome of double-hit or double-expressor lymphoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Compuestos de Boro/uso terapéutico , Linfoma no Hodgkin/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Compuestos de Boro/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Factor de Transcripción ReIA/química , Factor de Transcripción ReIA/metabolismo
10.
Sci China Life Sci ; 64(9): 1481-1490, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33439458

RESUMEN

The stability of Ikaros family zinc finger protein 1 (Ikaros), a critical hematopoietic transcription factor, can be regulated by cereblon (CRBN) ubiquitin ligase stimulated by immunomodulatory drugs in multiple myeloma. However, other stabilization mechanisms of Ikaros have yet to be elucidated. In this study, we show that the pharmacologic inhibition or knockdown of Hsp90 downregulates Ikaros in acute myeloid leukemia (AML) cells. Proteasome inhibitor MG132 but not autophagy inhibitor chloroquine could suppress the Hsp90 inhibitor STA-9090-induced reduction of Ikaros, which is accompanied with the increased ubiquitination of Ikaros. Moreover, Ikaros interacts with E3 ubiquitin-ligase C terminal Hsc70 binding protein (CHIP), which mediates the STA-9090-induced ubiquitination of Ikaros. In addition, the knockdown of Ikaros effectively inhibits the proliferation of leukemia cells, but this phenomenon could be rescued by Ikaros overexpression. Collectively, our findings indicate that the interplay between HSP90 and CHIP regulates the stability of Ikaros in AML cells, which provides a novel strategy for AML treatment through targeting the HSP90/Ikaros/CHIP axis.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Factor de Transcripción Ikaros/metabolismo , Leucemia Mieloide Aguda/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Células HEK293 , Humanos , Ubiquitinación
11.
Nat Commun ; 12(1): 51, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397955

RESUMEN

Identifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin-Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Inhibidores de Proteínas Quinasas/farmacología , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Daño del ADN , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Fusión bcr-abl , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína 1 de Unión a la Caja Y/metabolismo , Proteínas ras/metabolismo
12.
Acta Pharmacol Sin ; 42(4): 604-612, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32694757

RESUMEN

The kinase FLT3 internal tandem duplication (FLT3-ITD) is related to poor clinical outcomes of acute myeloid leukemia (AML). FLT3 inhibitors have provided novel strategies for the treatment of FLT3-ITD-positive AML. But they are limited by rapid development of acquired resistance and refractory in monotherapy. Recent evidence shows that inducing the degradation of FLT3-mutated protein is an attractive strategy for the treatment of FLT3-ITD-positive AML, especially those with FLT3 inhibitor resistance. In this study we identified Wu-5 as a novel USP10 inhibitor inducing the degradation of FLT3-mutated protein. We showed that Wu-5 selectively inhibited the viability of FLT3 inhibitor-sensitive (MV4-11, Molm13) and -resistant (MV4-11R) FLT3-ITD-positive AML cells with IC50 of 3.794, 5.056, and 8.386 µM, respectively. Wu-5 (1-10 µM) dose-dependently induced apoptosis of MV4-11, Molm13, and MV4-11R cells through the proteasome-mediated degradation of FLT3-ITD. We further demonstrated that Wu-5 directly interacted with and inactivated USP10, the deubiquitinase for FLT3-ITD in vitro (IC50 value = 8.3 µM) and in FLT3-ITD-positive AML cells. Overexpression of USP10 abrogated Wu-5-induced FLT3-ITD degradation and cell death. Also, the combined treatment of Wu-5 and crenolanib produced synergistic cell death in FLT3-ITD-positive cells via the reduction of both FLT3 and AMPKα proteins. In support of this, AMPKα inhibitor compound C synergistically enhanced the anti-leukemia effect of crenolanib, while AMPKα activator metformin inhibited the anti-leukemia effect of crenolanib. In summary, we demonstrate that Wu-5, a novel USP10 inhibitor, can overcome FLT3 inhibitor resistance and synergistically enhance the anti-AML effect of crenolanib through targeting FLT3 and AMPKα pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Piperidinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismo
14.
Elife ; 92020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32393438

RESUMEN

Platelets are anucleate cells in blood whose principal function is to stop bleeding by forming aggregates for hemostatic reactions. In addition to their participation in physiological hemostasis, platelet aggregates are also involved in pathological thrombosis and play an important role in inflammation, atherosclerosis, and cancer metastasis. The aggregation of platelets is elicited by various agonists, but these platelet aggregates have long been considered indistinguishable and impossible to classify. Here we present an intelligent method for classifying them by agonist type. It is based on a convolutional neural network trained by high-throughput imaging flow cytometry of blood cells to identify and differentiate subtle yet appreciable morphological features of platelet aggregates activated by different types of agonists. The method is a powerful tool for studying the underlying mechanism of platelet aggregation and is expected to open a window on an entirely new class of clinical diagnostics, pharmacometrics, and therapeutics.


Platelets are small cells in the blood that primarily help stop bleeding after an injury by sticking together with other blood cells to form a clot that seals the broken blood vessel. Blood clots, however, can sometimes cause harm. For example, if a clot blocks the blood flow to the heart or the brain, it can result in a heart attack or stroke, respectively. Blood clots have also been linked to harmful inflammation and the spread of cancer, and there are now preliminary reports of remarkably high rates of clotting in COVID-19 patients in intensive care units. A variety of chemicals can cause platelets to stick together. It has long been assumed that it would be impossible to tell apart the clots formed by different chemicals (which are also known as agonists). This is largely because these aggregates all look very similar under a microscope, making it incredibly time consuming for someone to look at enough microscopy images to reliably identify the subtle differences between them. However, finding a way to distinguish the different types of platelet aggregates could lead to better ways to diagnose or treat blood vessel-clogging diseases. To make this possible, Zhou, Yasumoto et al. have developed a method called the "intelligent platelet aggregate classifier" or iPAC for short. First, numerous clot-causing chemicals were added to separate samples of platelets taken from healthy human blood. The method then involved using high-throughput techniques to take thousands of images of these samples. Then, a sophisticated computer algorithm called a deep learning model analyzed the resulting image dataset and "learned" to distinguish the chemical causes of the platelet aggregates based on subtle differences in their shapes. Finally, Zhou, Yasumoto et al. verified iPAC method's accuracy using a new set of human platelet samples. The iPAC method may help scientists studying the steps that lead to clot formation. It may also help clinicians distinguish which clot-causing chemical led to a patient's heart attack or stroke. This could help them choose whether aspirin or another anti-platelet drug would be the best treatment. But first more studies are needed to confirm whether this method is a useful tool for drug selection or diagnosis.


Asunto(s)
Redes Neurales de la Computación , Agregación Plaquetaria , Citometría de Flujo , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Activación Plaquetaria , Trombosis/clasificación
15.
Opt Express ; 28(1): 519-532, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-32118978

RESUMEN

Optofluidic time-stretch quantitative phase imaging (OTS-QPI) is a powerful tool as it enables high-throughput (>10,000 cell/s) QPI of single live cells. OTS-QPI is based on decoding temporally stretched spectral interferograms that carry the spatial profiles of cells flowing on a microfluidic chip. However, the utility of OTS-QPI is troubled by difficulties in phase retrieval from the high-frequency region of the temporal interferograms, such as phase-unwrapping errors, high instrumentation cost, and large data volume. To overcome these difficulties, we propose and experimentally demonstrate frequency-shifted OTS-QPI by bringing the phase information to the baseband region. Furthermore, to show its boosted utility, we use it to demonstrate image-based classification of leukemia cells with high accuracy over 96% and evaluation of drug-treated leukemia cells via deep learning.


Asunto(s)
Imagenología Tridimensional , Microfluídica , Óptica y Fotónica , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Células HL-60 , Humanos , Células K562 , Leucemia/tratamiento farmacológico , Leucemia/patología , Factores de Tiempo
16.
Chem Commun (Camb) ; 56(21): 3159-3162, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32064479

RESUMEN

A fused tetraphenylethylene-based hole transporting material shows higher power conversion efficiency and better stability compared with its non-fused counterpart, and the former molecule even outperforms the conventional spiro-OMeTAD.

17.
Lab Chip ; 19(16): 2688-2698, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31287108

RESUMEN

Drug susceptibility (also called chemosensitivity) is an important criterion for developing a therapeutic strategy for various cancer types such as breast cancer and leukemia. Recently, functional assays such as high-content screening together with genomic analysis have been shown to be effective for predicting drug susceptibility, but their clinical applicability is poor since they are time-consuming (several days long), labor-intensive, and costly. Here we present a highly simple, rapid, and cost-effective liquid biopsy for ex vivo drug-susceptibility testing of leukemia. The method is based on an extreme-throughput (>1 million cells per second), label-free, whole-blood imaging flow cytometer with a deep convolutional autoencoder, enabling image-based identification of the drug susceptibility of every single white blood cell in whole blood within 24 hours by simply flowing a drug-treated whole blood sample as little as 500 µL into the imaging flow cytometer without labeling. Our results show that the method accurately evaluates the drug susceptibility of white blood cells from untreated patients with acute lymphoblastic leukemia. Our method holds promise for affordable precision medicine.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Citometría de Flujo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adulto , Línea Celular Tumoral , Niño , Femenino , Citometría de Flujo/economía , Humanos , Células K562 , Leucocitos/efectos de los fármacos , Leucocitos/patología , Masculino , Imagen Óptica , Medicina de Precisión , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
18.
Nanoscale ; 11(5): 2211-2222, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30656317

RESUMEN

The surface potential of particles is a double-edged sword for nanomedicine. The negative charge can protect nanoparticles from clearance before they reach the tumor tissue; however, it is difficult to phagocytose the negative particles by target cells due to the negative potential of the cytomembrane. Preparing techniques to efficiently release the encapsulated drug from negative nanoparticles into target cells is a formidable challenge facing advanced drug delivery studies. Herein, we have developed a novel "mosaic-type" nanoparticle system (GA-Cy7-NP) for selective drug release targeting hypoxic cancer cells. In this system, hypoxia-targeting near-infrared dye (Cy7) moiety with a positive charge is conjugated to an antitumor agent, namely, gambogic acid (GA). This conjugate could self-assemble into nanoparticles with surfactin in an aqueous solution, where the Cy7 group is embedded in the negatively charged particle surface formed by surfactin. Most remarkably, the "mosaic-type" nanoparticles could selectively release the loaded drug conjugates into hypoxic cancer cells without particle internalization. Using in vitro PC3 cell and xenograft mouse models, we demonstrate that GA-Cy7-NP exhibits enhanced drug distribution in tumor cells and superior antitumor activity as compared to the prototype drug when evaluated in terms of cell proliferation, tumor growth, and angiogenesis assay.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Antineoplásicos/farmacología , Carbocianinas/química , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Liberación de Fármacos , Humanos , Lipopéptidos/química , Masculino , Ratones , Ratones Desnudos , Nanopartículas/química , Trasplante de Neoplasias , Neovascularización Patológica , Tamaño de la Partícula , Péptidos Cíclicos/química , Xantonas/administración & dosificación
19.
Acta Pharmacol Sin ; 39(3): 492-498, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29168472

RESUMEN

Deubiquitinating protease USP7 is a promising therapeutic target for cancer treatment, and interest in developing USP7 inhibitors has greatly increased. In the present study, we reported a series of natural pentacyclic triterpenes with USP7 inhibitory activity in vitro. Among them, both the ursane triterpenes and oleanane triterpenes were more active than the lupine triterpenes, whereas ursolic acid was the most potent with IC50 of 7.0±1.5 µmol/L. Molecular docking studies showed that ursolic acid might occupy the ubiquitin binding pocket of USP7, with the 17-carboxyl group and 3-hydroxyl group playing a vital role in the USP7-ursolic acid interaction. Using the cellular thermal shift assay, we demonstrated that ursolic acid interacted with USP7 in RPMI8226 human myeloma cells. Ursolic acid dose-dependently inhibited the proliferation of the myeloma cells with IC50 of 6.56 µmol/L, accompanied by reductions in USP7 substrates such as MDM2, UHRF1 and DNMT1. Overexpression of USP7 partially, but significantly attenuated ursolic acid-induced cell death as well as downregulation of MDM2, UHRF1 and DNMT1. In conclusion, we demonstrate for the first time that pentacyclic triterpenes represent a novel scaffold for developing USP7 inhibitors and that USP7 inhibition contributes to the anti-cancer effect of ursolic acid.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/patología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Relación Estructura-Actividad , Triterpenos/antagonistas & inhibidores , Triterpenos/farmacología , Ubiquitina-Proteína Ligasas , Peptidasa Específica de Ubiquitina 7/biosíntesis , Ácido Ursólico
20.
Oncotarget ; 7(47): 77096-77109, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27780924

RESUMEN

Deubiquitinating enzyme USP7 has been involved in the pathogenesis and progression of several cancers. Targeting USP7 is becoming an attractive strategy for cancer therapy. In this study, we identified synthetic triterpenoid C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid (CDDO-Me) as a novel inhibitor of USP7 but not of other cysteine proteases such as cathepsin B and cathepsin D. CDDO-Me inhibits USP7 activity via a mechanism that is independent of the presence of α, ß-unsaturated ketones. Molecular docking studies showed that CDDO-Me fits well in the ubiquitin carboxyl terminus-binding pocket on USP7. Given that CDDO-Me is known to be effective against ovarian cancer cells, we speculated that CDDO-Me may target USP7 in ovarian cancer cells. We demonstrated that ovarian cancer cells have higher USP7 expression than their normal counterparts. Knockdown of USP7 inhibits the proliferation of ovarian cancer cells both in vitro and in vivo. Using the cellular thermal shift assay and the drug affinity responsive target stability assay, we further demonstrated that CDDO-Me directly binds to USP7 in cells, which leads to the decrease of its substrates such as MDM2, MDMX and UHRF1. CDDO-Me suppresses ovarian cancer tumor growth in an xenograft model. In conclusion, we demonstrate that USP7 is a novel target of ovarian cancer cells; targeting USP7 may contribute to the anti-cancer effect of CDDO-Me. The development of novel USP7 selective compounds based on the CDDO-Me-scaffold warrants further investigation.


Asunto(s)
Inhibidores Enzimáticos/administración & dosificación , Ácido Oleanólico/análogos & derivados , Neoplasias Ováricas/tratamiento farmacológico , Peptidasa Específica de Ubiquitina 7/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Simulación del Acoplamiento Molecular , Ácido Oleanólico/administración & dosificación , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Neoplasias Ováricas/metabolismo , Peptidasa Específica de Ubiquitina 7/química , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...