Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 929: 172643, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649049

RESUMEN

Particulate inorganic nitrogen aerosols (PIN) significantly influence air pollution and pose health risks worldwide. Despite extensive observations on ammonium (pNH4+) and nitrate (pNO3-) aerosols in various regions, their key sources and mechanisms in the Tibetan Plateau remain poorly understood. To bridge this gap, this study conducted a sampling campaign in Lhasa, the Tibetan Plateau's largest city, with a focus on analyzing the multiple isotopic signatures (δ15N, ∆17O). These isotopes were integrated into a Bayesian mixing model to quantify the source contributions and oxidation pathways for pNH4+ and pNO3-. Our results showed that traffic was the largest contributor to pNH4+ (31.8 %), followed by livestock (25.4 %), waste (21.8 %), and fertilizer (21.0 %), underscoring the impact of vehicular emissions on urban NH3 levels in Lhasa. For pNO3-, coal combustion emerged as the largest contributor (27.3 %), succeeded by biomass burning (26.3 %), traffic emission (25.3 %), and soil emission (21.1 %). In addition, the ∆17O-based model indicated a dominant role of NO2 + OH (52.9 %) in pNO3- production in Lhasa, which was similar to previous observations. However, it should be noted that the NO3 + volatile organic component (VOC) contributed up to 18.5 % to pNO3- production, which was four times higher than the Tibetan Plateau's background regions. Taken together, the multidimensional isotope analysis performed in this study elucidates the pronounced influence of anthropogenic activities on PIN in the atmospheric environment of Lhasa.

2.
Heliyon ; 10(4): e26078, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384578

RESUMEN

Continuous planting is unavoidable in agricultural production, but continuous planting affects plant growth and physiological characteristics. In this study, we analyzed rhizosphere soil nutrients, physiological characteristics, hormone metabolome changes and their interactions of Casuarina equisetifolia (C. equisetifolia) with the increase of continuous planting number. The results found that C. equisetifolia root was significantly inhibited, the plant height was dwarfed and the biomass was significantly reduced as continuous planting number increased. Secondly, continuous planting caused a decrease in the rhizosphere soil nutrient transformation capacity, and a significant decrease in the total soil nutrient and available nutrient content. Analysis of physiological indexes showed that continuous planting resulted in a decrease in nitrogen, phosphorus, and potassium content, a decrease in the activity of physiological indexes of resistance, and a decrease in photosynthetic capacity of C. equisetifolia leaves. Hormone metabolome analysis showed that continuous planting critically affected the accumulation of five characteristic hormones in C. equisetifolia leaves, in which salicylic acid 2-O-ß-glucoside (SAG), 2-oxindole-3-acetic acid (OxIAA), trans-zeatin-O-glucoside (tZOG) and gibberellin A3 (GA3) content decreased significantly while abscisic acid (ABA) content increased significantly. In conclusion, continuous planting lowered the rhizosphere soil nutrient transformation capacity of C. equisetifolia, lowered the soil available nutrient content, inhibited their root growth, and hindered the nutrient uptake and transportation by the root, thus led to the decrease of the nutrient accumulation capacity in the leaves of C. equisetifolia, and the decrease of SAG, OxIAA, and tZOG, GA3 synthesis ability decreased, ABA accumulated in large quantities, C. equisetifolia resistance and photosynthesis ability decreased, and their growth was impeded. This study provides insights for the effective management of continuous planting in the cultivation of C. equisetifolia.

3.
Front Plant Sci ; 14: 1288444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155858

RESUMEN

Continuous planting has a severe impact on the growth of Casuarina equisetifolia. In this study, the effects of three different long-term monocultures (one, two and three replanting) on the physicochemical indexes, microbial functional diversity, and soil metabolomics were analyzed in C. equisetifolia rhizosphere soil. The results showed that rhizosphere soil organic matter content, cation exchange capacity, total and available nitrogen, total and available phosphorus, and total and available potassium contents significantly decreased with the increasing number of continuous plantings. The evaluation of microbial functional diversity revealed a reduction in the number of soil microorganisms that rely on carbohydrates for carbon sources and an increase in soil microorganisms that used phenolic acid, carboxylic acid, fatty acid, and amines as carbon sources. Soil metabolomics analysis showed a significant decrease in soil carbohydrate content and a significant accumulation of autotoxic acid, amine, and lipid in the C. equisetifolia rhizosphere soil. Consequently, the growth of C. equisetifolia could hinder total nutrient content and their availability. Thus, valuable insights for managing the cultivation of C. equisetifolia and soil remediation were provided.

4.
Front Plant Sci ; 14: 1324184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126014

RESUMEN

Casuarina equisetifolia (C. equisetifolia) is an economically important forest tree species, often cultivated in continuous monoculture as a coastal protection forest. Continuous planting has gradually affected growth and severely restricted the sustainable development of the C. equisetifolia industry. In this study, we analyzed the effects of continuous planting on C. equisetifolia growth and explored the rhizosphere soil microecological mechanism from a metagenomic perspective. The results showed that continuous planting resulted in dwarfing, shorter root length, and reduced C. equisetifolia seedling root system. Metagenomics analysis showed that 10 key characteristic microorganisms, mainly Actinoallomurus, Actinomadura, and Mycobacterium, were responsible for continuously planted C. equisetifolia trees. Quantitative analysis showed that the number of microorganisms in these three genera decreased significantly with the increase of continuous planting. Gene function analysis showed that continuous planting led to the weakening of the environmental information processing-signal transduction ability of soil characteristic microorganisms, and the decrease of C. equisetifolia trees against stress. Reduced capacity for metabolism, genetic information processing-replication and repair resulted in reduced microbial propagation and reduced microbial quantity in the rhizosphere soil of C. equisetifolia trees. Secondly, amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins were all significantly reduced, resulting in a decrease in the ability of the soil to synthesize and metabolize carbon and nitrogen. These reduced capacities further led to reduced soil microbial quantity, microbial carbon and nitrogen, microbial respiration intensity, reduced soil enzyme nutrient cycling and resistance-related enzyme activities, a significant reduction in available nutrient content of rhizosphere soils, a reduction in the ion exchange capacity, and an impediment to C. equisetifolia growth. This study provides an important basis for the management of continuously planted C. equisetifolia plantations.

5.
Front Plant Sci ; 14: 1179960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426968

RESUMEN

Soil acidification in Chinese tea plantations is widespread, and it has significantly affected the growth of tea trees; it was important to explore soil remediation of acidified tea plantations in depth for the sustainable development of tea industry. In this study, the effects of sheep manure fertilizer with different application depths on soil acidification, tea yield and quality, and soil nitrogen transformation in tea plantations were analyzed for five consecutive years from 2018 to 2022. The results showed that long-term use of sheep manure fertilizer significantly reduced soil acidification (P< 0.05) in tea plantations, improved soil pH and soil ammonium nitrogen content, enhanced root activity and root nitrogen uptake capacity of tea trees, and thus improved tea yield and quality. The effect of different application depths of sheep manure fertilizer on tea yield and quality was mainly reflected in the transformation ability of soil ammonium nitrogen and nitrate nitrogen, which showed that high transformation ability of soil ammonium nitrogen and high ammonium nitrogen content were beneficial to high tea yield and vice versa, and the best effect was achieved when sheep manure was applied at a depth of 50 cm and 70 cm. The topsis analysis confirmed that sheep manure fertilization had a greater effect on root activity, ammonium nitrogen, ammonia intensity, and nifH gene. This study provided an important practical basis for the restoration of acidified tea plantation soil through sheep manure fertilizer management.

6.
Heliyon ; 9(4): e14855, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37025800

RESUMEN

Benshan tea is a kind of oolong tea, and Benshan (Camellia sinensis) tea tree originates from Anxi County of Fujian Province in China, which is a national tea tree breed. Tea processing is the key to the formation of its odor characteristics. It is extremely important to step by step analyze effects of tea processing on aroma intensity and the formation of odor characteristics for optimizing tea processing process and improving tea quality. The results of this study showed that processing resulted in a significant increase in the content of volatile compounds in tea leaves, i.e., from 25.213 µg/kg to 111.223 µg/kg, in which the volatile compounds were mainly terpenoids. Secondly, the analysis found that 20 kinds of key compounds constituted to odor characteristics of Benshan tea leaves, among which geraniol, trans-ß-ionone, gerol, citronellol, benzeneacetaldehyde, and trans-nerolidol were the most key six. Floral and fruity aromas, especially floral aroma, mainly formed odor characteristics of Benshan tea after processing, while floral aroma mainly came from the contribution of geraniol, which was the foremost compound in the formation of floral aroma of Benshan tea.

7.
Front Plant Sci ; 14: 1137465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909384

RESUMEN

Acidification can seriously affect the growth of tea trees and the yield and quality of tea leaves. In this study, we analyzed the effects of acidification on the physicochemical properties, microorganisms and metabolites of tea rhizosphere soils with different pH values, and the results showed that with the increase of soil pH, the organic matter content, cation exchange capacity, microbial biomass carbon, microbial biomass nitrogen, microbial respiration intensity, bacterial number and actinomyces number in tea rhizosphere soil all showed an increasing trend, while the fungi number decreased. The results of soil metabolite analysis showed that 2376, 2377 and 2359 metabolites were detected in tea rhizosphere soil with pH values of 3.29, 4.74 and 5.32, respectively, and the number of similar compounds reached 2331, accounting for more than 98%. The results of soil metabolite content analysis showed that with the increase of soil pH, the total contents of metabolite of tea rhizosphere soil increased significantly. The results of correlation analysis between physicochemical indexes of soil and microorganisms and soil metabolites showed that physicochemical indexes of soil and microorganisms were significantly correlated with 221 soil metabolites, among which 55 were significantly positively correlated and 166 were significantly negatively correlated. Based on correlation interaction network analysis, 59 characteristic compounds were obtained and divided into 22 categories, among which 7 categories compounds showed a significant increasing trend with the increase of soil pH, while the other 15 categories compounds showed the opposite trend. Based on the functional analysis of characteristic metabolites, this study found that with the increase of soil pH in tea rhizosphere, the diversity and number of soil microorganisms increased, and the cyclic ability of C and N of tea rhizosphere soil was enhanced, which in turn might lead to the enhancement of resistance of tea tree and promote the growth of tea tree.

8.
Food Chem X ; 17: 100616, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36974179

RESUMEN

Processing is extremely important for the formation of aroma characteristic of tea leaves. In this study, the effects of processing on the content of volatile compounds, aroma intensity and odor characteristic of Shuixian tea were analyzed. The results showed that the content of volatile compounds in Shuixian tea increased significantly after processing, among which terpenoids and esters were the highest. There were 18 key compounds constituting the aroma characteristics of Shuixian tea, among which geraniol and nerol were the most important compounds, which contributed 96.28% to the aroma of Shuixian tea. The odor characteristics of Shuixian tea were mainly floral and fruity and the contribution of floral mainly came from geraniol, while fruity mainly came from nerol. Geraniol and nerol compounds increased rapidly after the withering process of tea leaves. This study provided an important reference for the improvement of processing technology and quality enhancement of Shuixian tea.

9.
Environ Sci Technol ; 57(4): 1592-1599, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36662717

RESUMEN

Formaldehyde (HCHO) plays a critical role in atmospheric photochemistry and public health. While existing studies have suggested that vehicular exhaust is an important source of HCHO, the operating condition-based diesel truck HCHO emission measurements remain severely limited due to the limited temporal resolution and accuracy of measurement techniques. In this study, we characterized the second-by-second HCHO emissions from 29 light-duty diesel trucks (LDDTs) in China over dynamometer and real-world driving tests using a portable online HCHO emission measurement system (PEMS-HCHO), considering various operating conditions. Our results suggested that the HCHO emissions from LDDTs might be underestimated by the widely used offline DNPH-HPLC method. The HCHO emissions at a 200 s cold start from China V LDDT can be up to 50 mg/start. Different driving conditions over dynamometer and real-world driving tests led to a 2-4 times difference in the HCHO emission factors (EFs). Under real-world hot-running conditions, the HCHO EFs of China III, IV, V, and VI LDDTs were 43.5 ± 35.7, 10.6 ± 14.2, 8.8 ± 5.1, and 3.2 ± 1.2 mg/km, respectively, which significantly exceeded the latest California low emission vehicle III HCHO emission standard (2.5 mg/km). These findings highlighted the significant impact of vehicle operating conditions on HCHO emissions and the urgency of regulating HCHO emissions from LDDTs in China.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Vehículos a Motor , China , Formaldehído , Monitoreo del Ambiente/métodos , Gasolina
10.
Neural Comput Appl ; 35(3): 2103-2117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35496654

RESUMEN

Public health machinery learning platform based on cloud-native is a system platform that combines machine learning frameworks and cloud-native technology for public health services. The problem of how its flexible value is realized has been widely concerned by all public health network intelligent researchers. Thus, this article examines the relationship between cloud-native architecture flexibility and cloud provider value and the processes and the boundary condition by which cloud-native architecture flexibility affects cloud provider value based on innovation theory and dynamic capability theory. The results of a survey of 509 platform-related respondents in China show that cloud-native architecture flexibility is positively related to cloud provider value, and both absorptive capacity and supply chain agility mediate the above-mentioned effect. Moreover, R&D subsidies strengthen both the positive relationship between absorptive capacity and cloud provider value and the relationship between supply chain agility and cloud provider value. In this study, cloud-native architecture flexibility, unit absorptive capacity, supply chain agility and R&D subsidies are considered into a flexible value generation mechanism model that extend the relevant research on the value generation mechanism of information system under the background of network intelligence, and to provide relevant enterprises with suggestions on upgrade strategies.

11.
Eur J Anaesthesiol ; 39(11): 858-867, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36106493

RESUMEN

BACKGROUND: Emergence agitation is a common paediatric complication after inhalational anaesthesia. Intranasal dexmedetomidine can prevent emergence agitation effectively, but the optimal dose is uncertain. OBJECTIVE: The aim of our study was to investigate the 95% effective dose (ED 95 ) of intranasal dexmedetomidine for the prevention of emergence agitation after inhalational anaesthesia for paediatric ambulatory surgery. DESIGN: A prospective, randomised, placebo-controlled, double-blind, clinical trial. SETTING: The study was conducted in Guangzhou Women and Children's Medical Center in China from August 2017 to December 2018. PATIENTS: Three hundred and eighteen children scheduled for ambulatory surgery were enrolled into two age groups of less than 3 years and at least 3 years. INTERVENTIONS: The children in each age group were randomised into five equal subgroups to receive either intranasal dexmedetomidine 0.5, 1.0, 1.5 or 2.0 µg kg -1 (Groups D 0.5 , D 1.0 , D 1.5 and D 2.0 ), or intranasal isotonic saline (group C) after induction. MAIN OUTCOME MEASURES: The primary outcome was the ED 95 dose of intranasal dexmedetomidine for preventing emergence agitation after inhalational anaesthesia for paediatric ambulatory surgery. RESULTS: The incidences of emergence agitation for Groups C, D 0.5 , D 1.0 , D 1.5 and D 2.0 were 63, 40, 23, 13 and 3% in children less than 3 years, and 43, 27, 17, 7 and 3% in children at least 3 years. The ED 95 of intranasal dexmedetomidine for preventing emergence agitation was 1.99 µg kg -1 [95% confidence interval (CI), 1.83 to 3.80 µg kg -1 ] in children less than 3 years, and 1.78  µg kg -1 (95% CI, 0.93 to 4.29 µg kg -1 ) in children at least 3 years. LMA removal time for groups D 1.5 and D 2.0 was 9.6 ±â€Š2.2 and 9.7 ±â€Š2.5 min, respectively, for children less than 3 years, and 9.4 ±â€Š2.0 and 9.9 ±â€Š2.7 min in children at least 3 years, respectively. Length of stay in the postanaesthesia care unit for Groups D 1.5 and D 2.0 was 34.3 ±â€Š9.6 and 37.1 ±â€Š11.2 min, respectively, in children less than 3 years, and 34.7 ±â€Š10.2 and 37.3 ±â€Š8.3 min in children at least 3 years, respectively. These times were longer in the D 1.5 and D 2.0 subgroups than in the control subgroup in the two age groups of less than 3 years and at least 3 years, respectively: 7.2 ±â€Š1.9 min in children less than 3 years and 7.3 ±â€Š2.5 min in children at least 3 years for LMA removal time, 22.2 ±â€Š7.9 min in children less than 3 years and 22.0 ±â€Š7.7 min in children at least 3 years for PACU stay time in control subgroup, respectively ( P  < 0.05). CONCLUSION: Intranasal dexmedetomidine prevented emergence agitation after paediatric surgery in a dose-dependent manner. The optimal dose of intranasal dexmedetomidine for preventing emergence agitation was higher in younger children. TRIAL REGISTRY: chictr.org.cn: ChiCTR-IOR-17012415.


Asunto(s)
Anestésicos por Inhalación , Dexmedetomidina , Delirio del Despertar , Anestesia por Inhalación/efectos adversos , Anestésicos por Inhalación/efectos adversos , Niño , Preescolar , Dexmedetomidina/efectos adversos , Método Doble Ciego , Delirio del Despertar/diagnóstico , Delirio del Despertar/epidemiología , Delirio del Despertar/etiología , Femenino , Humanos , Hipnóticos y Sedantes/uso terapéutico , Estudios Prospectivos , Agitación Psicomotora/diagnóstico , Agitación Psicomotora/epidemiología , Agitación Psicomotora/etiología
12.
Plants (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616251

RESUMEN

In this study, sheep manure fertilizers with different dosages were used for five consecutive years to treat acidified tea plantation soils, and the effects of sheep manure fertilizer on soil pH value, nitrogen transformation, and tea yield and quality were analyzed. The results showed that soil pH value showed an increasing trend after a continuous use of sheep manure fertilizer from 2018 to 2022. After the use of low dosage of sheep manure fertilizer (6 t/hm2-15 t/hm2), tea yield, the content of tea quality indicators (tea polyphenols, theanine, amino acid, and caffeine) and soil ammonium nitrogen content, ammoniating bacteria number, ammoniating intensity, urease activity and protease activity showed increasing trends and were significantly and positively correlated to soil pH value, while the related indexes showed increasing and then decreasing trends after the use of high dosage of sheep manure fertilizer (18 t/hm2). Secondly, the nitrate nitrogen content, nitrifying bacteria number, nitrifying intensity, nitrate reductase activity, and nitrite reductase activity showed decreasing trends after the use of low dosage of sheep manure fertilizer and showed significant negative correlations with soil pH value, while the related indexes showed decreasing trends after the use of high dosage of sheep manure and then increased. The results of principal component and interaction analysis showed that the effects of sheep manure fertilizers with different dosages on tea yield and quality were mainly based on the transformation ability of ammonium nitrogen and nitrate nitrogen in the soil, and the strong transformation ability of ammonium nitrogen and the high ammonium nitrogen content in the soil were conducive to the improvement of tea yield and quality, and vice versa. The results of topsis comprehensive evaluation and analysis showed that the most influential effect on the fertilization effect was the ammonium nitrogen content in the soil and long-term treatment with 15 t/hm2 of sheep manure fertilizer had the highest proximity to the best fertilization effect. This study provided an important practical basis for the remediation and fertilizer management in acidified tea plantation soils.

13.
Front Plant Sci ; 13: 1055900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618668

RESUMEN

Soil acidification in tea plantation seriously reduced the yield and quality of tea. It was an effective method to use organic fertilizer for acidified soil remediation to ensure tea yield and quality. In this study, different fertilizers were used to treat the acidified tea plantation soils for 4 consecutive years to analyze the remediation effect of different fertilizers on acidified soil and their effects on tea yield and quality. The results showed that during the period of 2017-2021, the soil pH value of tea plantation (S1) with long-term use of chemical fertilizer decreased continuously, from 3.07 to 2.82. In the tea plantation (S2), the soil pH value was stable between 4.26 and 4.65 in the combination of organic fertilizer and chemical fertilizer for a long time. The tea plantation (S3) with long-term use of organic fertilizer has a stable soil pH value between 5.13 and 5.33, which is most suitable for the growth of tea trees. The analysis results of tea yield and quality indicators (tea polyphenols, theanine, amino acids, caffeine, catechin components) showed that after long-term use of chemical fertilizer in S1 tea plantation, soil pH value decreased continuously, soil acidification intensified, tea tree growth was hindered, and tea yield and quality decreased continuously. S2 tea plantation used some organic fertilizer in combination with chemical fertilizer for a long time, the soil pH value gradually improved, soil acidification weakened, and tea yield and quality improved steadily. After long-term use of organic fertilizer in S3 tea plantation, soil acidification was significantly improved, which was conducive to the normal growth of tea trees and the yield and quality of tea reached the maximum. The results of interaction analysis showed that the long-term use of chemical fertilizer had a negative effect on the growth of tea trees, and the combination of organic fertilizer and chemical fertilizer improved the growth of tea trees to some extent, but the effect was poor, while the long-term use of organic fertilizer was the most beneficial to the growth of tea trees and most conducive to ensuring the yield and quality of tea. This study provides important practical significance for the remediation and fertilizer regulation of acidified tea plantation soils. In the process of field experiment, climate is a variable factor, and attention should be paid to the effect of climate change on fertilization efficiency in subsequent experiment.

14.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2939-2948, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34664468

RESUMEN

With a pot experiment, the Biolog microplate and phospholipid fatty acid (PLFA) technology were used to explore whether the application of bacteria, Bacillus amyloliquefaciens (YB706) and Burkholderia (BK8), could improve the soil nutrient, microbial community and growth of Casuarina equisetifolia. The results showed that the concentrations of soil alkali-hydrolyzed nitrogen and available phosphorus of C. equisetifolia treated with YB706 and BK8 increased significantly compared with the control (CK), but the concentrations of total nitrogen, total phosphorus, total potassium and available potassium changed little, plant height increased by 59.1% and 63.9%, respectively, and the chlorophyll content of plant treated with BK8 increased by 81.9%. The average well color development values showed a pattern of YB706>CK>BK8. The utilization rate of different carbon sources showed the same trend except the amino acids. Both YB706 and BK8 treatments significantly increased the richness and quantity of soil microorganisms. The PLFA of all kinds of microorganisms was BK8>YB706>CK except actinomycetes. The ratio of soil fungi to bacteria was increased compared with CK. The Simpson, Shannon, Brillouin and McIntosh indices of rhizosphere soil microbial community in YB706 and BK8 treatments were significantly increased. Our results suggested that application of YB706 and BK8 could improve the growth rate of C. equisetifolia seedlings, effectively increase the contents of soil available nutrients, increase soil microbial diversity, and improve soil microbial environment.


Asunto(s)
Microbiota , Suelo , Rizosfera , Plantones , Microbiología del Suelo
15.
BMC Anesthesiol ; 21(1): 192, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34271853

RESUMEN

BACKGROUND: Effective postoperative analgesia is needed to prevent the negative effects of postoperative pain on patient outcomes. To compare the effectiveness of hydromorphone hydrochloride and sufentanil, combined with flurbiprofen axetil, for postoperative analgesia in pediatric patients. METHODS: This prospective randomized controlled trial included 222 pediatric patients scheduled for repair of a structural congenital malformation under general anesthesia. Patients were randomized into 3 groups: hydromorphone hydrochloride 0.1 mg/kg (H1), hydromorphone hydrochloride 0.2 mg/kg; (H2) or sufentanil 1.5 µg/kg (S). Analgesics were diluted in 0.9% saline to 100 ml and infused continuously at a basic flow rate of 2 mL per h. The primary outcome measure was the Face, Legs, Activity, Cry, and Consolability (FLACC) pain score. Secondary outcomes included heart rate (HR), respiration rate (RR), SpO2, Ramsay sedation scores, scores on the Paediatric Anaesthesia Emergence Delirium (PAED) scale, adverse reactions, parent satisfaction with analgesia. RESULTS: The FLACC score was significantly lower in H1 and H2 groups compared to S. The Ramsay sedation score was significantly higher in H1 and H2 groups compared to S. Recovery time was shorter in H1 group compared to patients H2 group or S group. There were no significant differences in the PAED scale, HR, RR, SpO2, adverse reactions, satisfaction of parents with analgesia, or length and cost of hospital stay. CONCLUSIONS: Hydromorphone hydrochloride is a more effective analgesic than sufentanil for postoperative pain in pediatric patients following surgical repair of a structural congenital malformation, however, hydromorphone hydrochloride and sufentanil had similar safety profiles in this patient population. TRIAL REGISTRATION: Chinese Clinical Trial Register ChiCTR-INR-17013935). Clinical trial registry URL: Date of registration: December 14, 2017.


Asunto(s)
Anomalías Congénitas/cirugía , Hidromorfona/administración & dosificación , Dolor Postoperatorio/tratamiento farmacológico , Sufentanilo/administración & dosificación , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversos , Anestesia General/métodos , Preescolar , Relación Dosis-Respuesta a Droga , Delirio del Despertar/epidemiología , Femenino , Flurbiprofeno/administración & dosificación , Flurbiprofeno/análogos & derivados , Humanos , Hidromorfona/efectos adversos , Lactante , Masculino , Estudios Prospectivos , Método Simple Ciego , Sufentanilo/efectos adversos
16.
Front Plant Sci ; 11: 578812, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569067

RESUMEN

The growth and productivity of Casuarina equisetifolia is negatively impacted by planting sickness under long-term monoculture regimes. In this study, Illumina MiSeq sequencing targeting nifH genes was used to assess variations in the rhizospheric soil diazotrophic community under long-term monoculture rotations. Principal component analysis and unweighted pair-group method with arithmetic means (UPGMA) clustering demonstrated distinct differences in diazotrophic community structure between uncultivated soil (CK), the first rotation plantation (FCP), the second rotation plantation (SCP), and the third rotation plantation (TCP). Taxonomic analysis showed that the phyla Proteobacteria increased while Verrucomicrobia decreased under the consecutive monoculture (SCP and TCP). The relative abundance of Paraburkholderia, Rhodopseudomonas, Bradyrhizobium, Geobacter, Pseudodesulfovibrio, and Frankia increased significantly while Burkholderia, Rubrivivax, and Chlorobaculum declined significantly at the genus level under consecutive monoculture (SCP and TCP). Redundancy analysis (RDA) showed that Burkholderia, Rubrivivax, and Chlorobaculum were positively correlated with total nitrogen and available nitrogen. In conclusion, continuous C. equisetifolia monoculture could change the structure of diazotrophic microbes in the rhizosphere, resulting in the imbalance of the diazotrophic bacteria population, which might be a crucial factor related to replanting disease in this cultivated tree species.

17.
Sci Rep ; 7(1): 6691, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28751741

RESUMEN

This study examined the hypotheses that soil microbial community composition and catabolic activity would significantly degenerated by consecutive monoculture in Chinese fir plantations. The phospholipid fatty acids (PLFA) and community level physiological profiles (CLPP) methods were used to assess the variations of soil microbial community among the first rotation Chinese fir plantation (FCP), the second rotation plantation (SCP) and the third rotation plantation (TCP). The total content of PLFA biomarkers was highest in FCP, followed by SCP, and TCP was the least detected. Conversely, the fungi/bacteria ratio significantly increased in the SCP and TCP soils. The average well-color development (AWCD) values significantly decreased (FCP > SCP > TCP). However, the sum of AWCD values of amino acids, carboxylic acids and phenolic compounds were higher significantly in the SCP and TCP soils than FCP soils, suggesting that the microflora feeding on acids gradually became predominant in the continuous monoculture plantation soils. Soil C/N ratio was one of the most important factors to soil microbial diversity. Both the PLFA and CLPP results illustrated the long-term pure plantation pattern exacerbated the microecological imbalance in the rhizospheric soils of Chinese fir, and markedly decreased the soil microbial community diversity and metabolic activity.


Asunto(s)
Agricultura , Bacterias/metabolismo , Cunninghamia/crecimiento & desarrollo , Microbiología del Suelo , Suelo , Ácidos Grasos/análisis , Fosfolípidos/análisis , Análisis de Componente Principal
18.
PLoS One ; 10(10): e0141203, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26496710

RESUMEN

The aim of this study is to analyze the effects of forest gaps on the variations of soil properties in Castanopsis kawakamii natural forest. Soil physical and chemical properties in various sizes and development stages were studied in C. kawakamii natural forest gaps. The results showed that forest gaps in various sizes and development stages could improve soil pore space structure and water characteristics, which may effectively promote the water absorbing capacity for plant root growth and play an important role in forest regeneration. Soil pore space structure and water characteristics in small gaps showed more obvious improvements, followed by the medium and large gaps. Soil pore space structure and water characteristics in the later development stage of forest gaps demonstrated more obvious improvements, followed by the early and medium development stages. The contents of hydrolysable N and available K in various sizes and development stages of forest gaps were higher than those of non-gaps, whereas the contents of total N, total P, available P, organic matter, and organic carbon were lower. The contents of total N, hydrolysable N, available K, organic matter, and organic carbon in medium gaps were higher than those of large and small gaps. The disturbance of forest gaps could improve the soils' physical and chemical properties and increase the population species' richness, which would provide an ecological basis for the species coexistence in C. kawakamii natural forest.


Asunto(s)
Fagaceae/fisiología , Suelo/química , Árboles/fisiología , Carbono/análisis , Bosques , Agua Subterránea , Nitrógeno/análisis , Porosidad
19.
PLoS One ; 10(8): e0135354, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267338

RESUMEN

Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations.


Asunto(s)
Microbiota , Pinus/microbiología , Rizosfera , Microbiología del Suelo , Biomasa , Pinus/fisiología , Clima Tropical
20.
PLoS One ; 10(6): e0129397, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26098851

RESUMEN

Soil microbes are active players in energy flow and material exchange of the forest ecosystems, but the research on the relationship between the microbial diversity and the vegetation types is less conducted, especially in the subtropical area of China. In this present study, the rhizosphere soils of evergreen broad-leaf forest (EBF), coniferous forest (CF), subalpine dwarf forest (SDF) and alpine meadow (AM) were chosen as test sites. Terminal-restriction fragment length polymorphisms (T-RFLP) analysis was used to detect the composition and diversity of soil bacterial communities under different vegetation types in the National Natural Reserve of Wuyi Mountains. Our results revealed distinct differences in soil microbial composition under different vegetation types. Total 73 microbes were identified in soil samples of the four vegetation types, and 56, 49, 46 and 36 clones were obtained from the soils of EBF, CF, SDF and AM, respectively, and subsequently sequenced. The Actinobacteria, Fusobacterium, Bacteroidetes and Proteobacteria were the most predominant in all soil samples. The order of Shannon-Wiener index (H) of all soil samples was in the order of EBF>CF>SDF>AM, whereas bacterial species richness as estimated by four restriction enzymes indicated no significant difference. Principal component analysis (PCA) revealed that the soil bacterial communities' structures of EBF, CF, SDF and AM were clearly separated along the first and second principal components, which explained 62.17% and 31.58% of the total variance, respectively. The soil physical-chemical properties such as total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) were positively correlated with the diversity of bacterial communities.


Asunto(s)
Bosques , Pradera , Microbiota/genética , Polimorfismo de Longitud del Fragmento de Restricción , Microbiología del Suelo , Carbono/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Suelo/química , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...