Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38772043

RESUMEN

Caries is a destructive condition caused by bacterial infection that affects the hard tissues of the teeth, significantly reducing the quality of life for individuals. Photothermal therapy (PTT) offers a noninvasive and painless treatment for caries, but the use of unsafe laser irradiance limits its application. To address this challenge, we prepared nanoparticles of silver ion-doped Prussian blue (AgPB), which was encased within cationic guar gum (CG) to form the antibacterial PTT hydrogel CG-AgPB with a photothermal conversion efficiency of 34.4%. When exposed to an 808 nm laser at a power density of 0.4 W/cm2, the hydrogel readily reached a temperature of over 50 °C in just 3 min, synchronized by the discharge of Ag+ ions from the interstitial sites of AgPB crystals, resulting in broad-spectrum and synergistic antibacterial activities (>99%) against individual oral pathogens (Streptococcus sanguinis, Streptococcus mutans, and Streptococcus sobrinus) and pathogen-induced biofilms. In vivo, CG-AgPB-mediated PTT demonstrated a capability to profoundly reduce the terminal number of cariogenic bacteria to below 1% in a rat model of caries. Given the outstanding biocompatibility, injectability, and flushability, this CG-AgPB hydrogel may hold promise as a next-generation oral hygiene adjunct for caries management in a clinical setting.

2.
NPJ Precis Oncol ; 8(1): 74, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521810

RESUMEN

Rab27A is a small GTPase-mediating exosome secretion, which participates in tumorigenesis of multiple cancer types. Understanding the biological role of Rab27A in non-small cell lung cancer (NSCLC) is of great importance for oncological research and clinical treatment. In this study, we investigate the function and internal mechanism of Rab27A in NSCLC. Results show that Rab27A is overexpressed in NSCLC, and regulates the tumor proliferation, migration, invasion, and cell motility in vitro and in vivo, and is negatively regulated by miR-124. Further research reveals that upregulated Rab27A can induce the production of IFNα in the medium by mediating exosome secretion. Then IFNα activates TYK2/STAT/HSPA5 signaling to promote NSCLC cell proliferation and metastasis. This process can be suppressed by TYK2 inhibitor Cerdulatinib. These results suggest that Rab27A is involved in the pathogenesis of NSCLC by regulating exosome secretion and downstream signaling, and inhibitors targeting this axis may become a promising strategy in future clinical practice.

3.
Adv Healthc Mater ; : e2400083, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38447228

RESUMEN

Prussian blue (PB) nanozymes are demonstrated as effective therapeutics for ulcerative colitis (UC), yet an unmet practical challenge remains in the scalable production of these nanozymes and uncertainty over their efficacy. With a novel approach, a series of porous manganese-iron PB (MnPB) colloids, which are shown to be efficient scavengers for reactive oxygen species (ROS) including hydroxyl radical, superoxide anion, and hydrogen peroxide, are prepared. In vitro cellular experiments confirm the capability of the nanozyme to protect cells from ROS attack. In vivo, the administration of MnPB nanozyme through gavage at a dosage of 10 mg kg-1 per day for three doses in total potently ameliorates the pathological symptoms of acute UC in a murine model, resulting in mitigated inflammatory responses and improved viability rate. Significantly, the nanozyme produced at a large scale can be achieved at an unprecedented yield weighting ≈11 g per batch of reaction, demonstrating comparable anti-ROS activities and treatment efficacy to its small-scale counterpart. This work represents the first demonstration of the scale-up preparation of PB analog nanozymes for UC without compromising treatment efficacy, laying the foundation for further testing of these nanozymes on larger animals and promising clinical translation.

4.
Front Immunol ; 15: 1328933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375474

RESUMEN

Background: Existing studies on the relationship between tea intake and lung diseases have yielded inconsistent results, leading to an ongoing dispute on this issue. The impact of tea consumption on the respiratory system remained elucidating. Materials and methods: We conducted a two-sample Mendelian randomization (MR) study to evaluate the associations between five distinct tea intake phenotypes and 15 different respiratory outcomes using open Genome-wide association study (GWAS) data. The inverse variance weighted (IVW) was used for preliminary screening and a variety of complementary methods were used as sensitivity analysis to validate the robustness of MR estimates. Pathway enrichment analysis was used to explore possible mechanisms. Results: IVW found evidence for a causal effect of standard tea intake on an increased risk of lung squamous cell cancer (LSCC) (OR = 1.004; 95% CI = 1.001-1.007; P = 0.00299). No heterogeneity or pleiotropy was detected. After adjustment for potential mediators, including smoking, educational attainment, and time spent watching television, the association was still robust in multivariable MR. KEGG and GO enrichment predicted proliferation and activation of B lymphocytes may play a role in this causal relation. No causalities were observed when evaluating the effect of other kinds of tea intake on various pulmonary diseases. Conclusion: Our MR estimates provide causal evidence of the independent effect of standard tea intake (black tea intake) on LSCC, which may be mediated by B lymphocytes. The results implied that the population preferring black tea intake should be wary of a higher risk of LSCC.


Asunto(s)
Camellia sinensis , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Pulmonares/genética ,
5.
Mater Today Bio ; 24: 100941, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38269055

RESUMEN

The biotoxicity and chemotherapeutic resistance of cisplatin (CDDP) pose a challenge for tumor therapy. Practically, the change in the therapeutic response of tumor from resistance to sensitivity are impressive but challenging. To this end, we propose a strategy of "one stone, three birds" by designing a CuPt nanoalloy to simultaneously eliminate GSH, relieve hypoxia, and promote ROS production for effectively reversing the platinum (IV) (Pt(IV), (c,c,t-[Pt(NH3)2Cl2(OOCCH2CH2COOH)2)) resistance. Notably, the CuPt nanoalloy exhibits ternary catalytic capabilities including mimicking GSH oxidase, catalase and peroxidase. With the subsequent disguise of tumor cell membrane, the CuPt nanoalloy is conferred with homologous targeting ability, making it actively recognize tumor cells and then effectively internalized by tumor cells. Upon entering tumor cell, it gives rise to GSH depletion, hypoxia relief, and oxidative stress enhancement by catalyzing the reaction of GSH and H2O2, which mitigates the vicious milieu and ultimately reinforces the tumor response to Pt(IV) treatment. In vivo results prove that combination therapy of mCuPt and Pt(IV) realizes the most significant suppression on A549 cisplatin-resistant tumor. This study provides a potential strategy to design novel nanozyme for conquering resistant tumor.

6.
Small ; 20(7): e2306961, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803466

RESUMEN

Copper is a vital micronutrient for lives and an important ingredient for bactericides and fungicides. Given its indispensable biological and agricultural roles, there is an urgent need to develop simple, affordable, and reliable methods for detecting copper in complicated matrixes, particularly in underdeveloped regions where costly standardized instruments and sample dilution procedures hinder progress. The findings that zinc-doped Prussian blue nanoparticle (ZnPB NP) exhibits exceptional efficiency in capturing and isolating copper ions, and accelerates the generation of dissolved oxygen in a solution of H2 O2 with remarkable sensitivity and selectivity, the signal of which displays a positive correlation with the copper level due to the copper-enhanced catalase-like activity of ZnPB NP, are presented. Consequently, the ZnPB NP serves as an all-in-one sensor for copper ion. The credibility of the method for copper assays in human urine and farmland soil is shown by comparing it to the standard instrumentation, yielding a coefficient of correlation (R2 = 0.9890), but the cost is dramatically reduced. This ZnPB nanozyme represents a first-generation probe for copper ion in complicated matrixes, laying the groundwork for the future development of a practical copper sensor that can be applied in resource-constrained environments.


Asunto(s)
Cobre , Nanopartículas , Humanos , Zinc , Ferrocianuros
7.
Small ; 20(14): e2306446, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38105592

RESUMEN

Copper-based nanozymes exhibit excellent antitumor activity but are easily inactivated due to the disturbance of proteins or other macromolecules with sulfhydryl. A tumor microenvironment-responsive CuMnO@Fe3O4 (CMF) core-shell nanozyme for highly efficient tumor theranostics is developed. A platelet-derived growth factor receptor-ß-recognizing cyclic peptide (PDGFB) target is conjugated to the surface of CMF to fabricate a tumor-specific nanozyme (PCMF). The core-shell nanostructure significantly avoids the oxidation and inactivation of copper-based nanozyme, promoting the antitumor activity of PCMF. The weak acid- and GSH-activated T1 and T2 relaxation rate of PCMF contributes to T1 and T2 dual contrast imaging at the tumor site. In addition, the PCMF disintegrates and produces some metal ions that possess Fenton catalytic activity (i.e., Cu+, Mn2+, and Fe2+) under TME. This process significantly depletes GSH, accelerates Fenton and Fenton-like reactions, enhances cellular reactive oxygen species (ROS) levels, and induces cancer cell apoptosis and ferroptosis. PCMF also exhibits photothermal functions, so it can be used in combined photothermal therapy, ferroptosis therapy, and chemodynamic therapy, improving anticancer activity. This work provides insights into the design of an exquisite nanostructure for high-sensitive and tumor-specific theranostics.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Medicina de Precisión , Cobre , Microambiente Tumoral , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Peróxido de Hidrógeno , Línea Celular Tumoral
8.
ACS Omega ; 8(36): 32331-32339, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37720741

RESUMEN

A novel type of water- and nutrient-retaining fertilizer (WNRF) was prepared by mixing, melting, and extruding high-energy electron-beam (HEEB)-irradiated corn straw, urea, and starch. HEEB irradiation technique effectively killed pathogenic microorganisms in straw and further improved the adsorption and binding capacity of straw to urea and water. Compared to nonirradiated HEEB samples, the optimal WNRF improved the water retention rate by 25.63%, the migrate-to-surface loss control rate by 60.2%, and the leaching loss control rate by 34.71%, respectively. Thus, it effectively facilitated the growth of pak choi with a 24% increase in the dry matter weight of the shoot. This work provides a promising approach to improve water and nutrient availability in arid and semi-arid regions and to promote the efficient utilization of straw resources.

9.
Int J Biol Macromol ; 251: 126175, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37558040

RESUMEN

Controlled-release systems are crucial for efficient pesticide utilization and environmental protection in agricultural production. The utilization of polysaccharide-based materials derived from biopolymers as carriers for controlling pesticide release holds significant potential. In this work, a reversible near infrared-responsive polysaccharide-based hydrogel (RNPH) was fabricated by employing a semi-interpenetrating polymer network (alginate-FeIII/pluronic F127) as a carrier to encapsulate Fe3O4@polydopamine (FP) and emamectin benzoate (EB)-loaded hollow mesoporous silica. The incorporation of FP into the RNPH introduced a photothermal effect, enabling the precise release of EB through reversible shrinkage of the hydrogel upon NIR irradiation. Additionally, the presence of magnetic Fe3O4 in the system facilitated the rapid removal of remaining RNPH from the environment using a magnet, reducing EB residue. Importantly, RNPH exhibited exceptional controlled-release performance and could be reused for at least 4 cycles. Furthermore, the anti-photolysis ability of EB protected by RNPH was enhanced by 4.8 times compared to EB alone. Moreover, RNPH significantly improved the adhesion of EB to foliar surfaces, thereby reducing the loss of EB while ensuring crop safety. Therefore, the polysaccharide-based hydrogel holds promise as a versatile carrier for the precise release of EB, offering valuable applications in enhancing pesticide bioavailability and promoting environmental safety.

10.
Front Psychiatry ; 14: 1162450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304441

RESUMEN

Background: Non-suicidal self-injury (NSSI) is a common feature among adolescents with mood disorders. Although childhood maltreatment has shown to be associated with non-suicidal self-injury (NSSI), previous studies have yielded mixed results in terms of different subtypes of childhood maltreatment and only few studies have investigated the effects of gender. The present cross-sectional study investigated effects of different types of childhood maltreatment on NSSI, as well as the role of gender in these effects. Methods: In this cross-sectional study, a total of 142 Chinese adolescent inpatients with mood disorders (37 males and 105 females) were consecutively recruited within a psychiatric hospital. Demographic and clinical characteristics were collected. Participants were administered the Childhood Trauma Questionnaire (CTQ), the Functional Assessment of Self-Mutilation (FASM). Results: 76.8% of the sample reported engaging NSSI in the previous 12 months. Female participants were more likely to engage in NSSI than males (p < 0.001). Participants in the NSSI group reported significantly more experiences of emotional abuse (p < 0.001) and emotional neglect (p = 0.005). With regards to gender differences, female participants who have experienced emotional abuse were more likely to engage in NSSI (p = 0.03). Conclusion: As a whole, NSSI represents a frequent phenomenon among adolescent clinical populations and females were more likely to engage in NSSI than males. NSSI was significantly related to experiences of childhood maltreatment and specifically related to emotional abuse and emotional neglect over and above other types of childhood maltreatment. Females were more sensitive to emotional abuse than males. Our study highlights the importance of screening for subtypes of childhood maltreatment as well as considering the effects of gender.

11.
ACS Omega ; 8(6): 5947-5957, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816633

RESUMEN

A new type of efficient and anti-extinguishing materials to inhibit coal spontaneous combustion is required because of the current situation of the short activity cycle of existing anti-extinguishing technology. Now, polyethylene glycol (PEG) was used as a water-absorbing monomer to polymerize various substances to prepare an AB-type mining thermosensitive hydrogel that was obviously thermoresponsive. The thermosensitive hydrogel, which is low-cost and stable, can be stored for a long time, and it is prepared by compounding A and B components. The orthogonal experiments determined the optimal ratio of component A, while the controlling variable experiments determined the optimal ratio of component B. The thermal stability and flame-retardant properties of the AB-type thermosensitive hydrogel were analyzed during the process of natural oxidation of coal, and the temperature responsiveness of thermosensitive hydrogels was investigated at different temperatures. The results showed that the optimal ratio of polyethylene glycol:methyl cellulose:sodium carboxymethyl cellulose:guar gum of component A was 6:6:1.2:1.5; and the ratio of bentonite:kaolin:Mg(OH)2 of component B was 2:1:1. When the ratio of component A to component B was 1:2, the AB-type thermosensitive hydrogel shows the best flame retardant properties. When this ratio of gel was applied to coal samples, the weight loss was just 6%, and the reduction of CO was as high as 72.6%. The gel, which was convenient for transportation in mining pipelines, had strong fluidity at low temperatures and rapid temperature response. As the temperature rose, a phase transition occurred gradually, and after the phase transition, a high-viscosity solid substance was formed, whose viscosity was approximately 11 times that of the room temperature. It plugged the pores effectively, and in the high-temperature region, the occurred phase transition gathered to extinguish the fire. It is a new type of high-efficiency anti-extinguishing material with excellent properties.

12.
Biomimetics (Basel) ; 8(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36648818

RESUMEN

The modification of biochar is essential for the development of multifunctional biochar materials with enhanced remediation effects on contaminated water. In this work, a biochar-based microcatalyst with sunlight sensitivity was synthesized by a creative modification method that involved the rapid fabrication of MnO2 microspheres by high-energy electron beam (HEEB) irradiation, and loading them into corn straw-derived honeycomb-like KOH-modified biochar (MBC) to obtain a sunlight-sensitive microcatalyst (SSM). The honeycomb-like structure of MBC facilitated the improvement in MnO2 dispersion and photocatalytic property through confinement effect. The effects of photocatalyst dosage, initial chlortetracycline (CTC) concentration, solution pH, temperature and coexisting ions on the photocatalytic performance of SSM were systemically investigated. The results indicated that SSM could efficiently degrade CTC in water and swine urine under sunlight, and exhibited high stability against coexistence of urea, Cl- and SO42-. Moreover, SSM showed good reusability in regeneration studies. This work provides a novel method for degrading CTC with potential application prospect.

13.
J Food Sci ; 88(2): 681-695, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36576128

RESUMEN

To control the Maillard reaction of infant formula (IF) during secondary shelf-life (SSL) and establish an SSL prediction model, the effects of storage temperatures (25°C, 37°C) and relative humidity (RH) levels (32%, 57%, and 75%) on the Maillard reaction products (MRPs) were evaluated. Visible color changes were observed during storage in samples stored at 37°C and not at 25°C. The available lysine loss was the largest, up to 64.14% and 69.40% after 4 weeks of storage at 37°C and 57% RH. At the end of storage, the 5-hydroxymethylfurfural, 3-deoxyglucuronide, fluorescence of advanced Maillard products and soluble Tryptophan (FAST) index, and Nε -carboxymethyllysine (CML) of two commercial IFs increased by 0.48-3.32, 1.26-12.65, 0.01-4.87, and 0.30-1.05 times, respectively. During storage, the glyoxal content in two commercial IFs tended to increase and then decrease in the range of 0.21-3.43 mg/100 g. The SSL of IFs was predicted using the multivariate accelerated shelf-life test and the Arrhenius model. At 25°C, the estimated SLL of two commercial IFs were 10-9 and 7-6 weeks at 57% and 75% RH, respectively. MRPs and ΔE* could be used as indicators for predicting the SLL of infant formula. PRACTICAL APPLICATION: The results of the study suggested that the increase in storage temperature and humidity during the SSL can promote the MR of IF, which affects the sensory and safety of IF. Therefore, consumers need to focus on controlling storage conditions during the SSL to avoid degradation of IF quality.


Asunto(s)
Fórmulas Infantiles , Reacción de Maillard , Humanos , Lactante , Temperatura
14.
Neurochem Res ; 48(5): 1395-1411, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36469163

RESUMEN

We previously showed that kaempferol (KAE) could exert neuroprotective effects against PD. It has been demonstrated that abnormal autophagy plays a key role in the development of PD. Mitochondrial dysfunction, involved in the development of PD, can damage dopaminergic neurons. Whether the protective effects of KAE were exerted via regulating autophagy remains largely undefined, however. This study aimed to investigate whether KAE could protect dopaminergic neurons via autophagy and the underlying mechanisms using a MPTP/MPP+-stimulated PD model. Cell viability was detected by cell counting kit-8 (CCK-8) assay, and protein levels of autophagy mediators along with mTOR signaling pathway molecules were investigated by immunohistochemistry and Western blot analyses. The results showed that KAE could ameliorate the behavioral impairments of mice, reduce the loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta, and reduce α-synuclein (α-syn) levels. Furthermore, KAE upregulated levels of autophagy effector protein of Beclin-1 and autophagy microtubule associated protein of light chain 3 (LC3) in the substantia nigra (SN) while rescuing mitochondrial integrity, and downregulated levels of ubiquitin binding protein p62 and cleaved caspase-3, probably by decreasing the mammalian target of rapamycin (mTOR) signaling pathway. Further in vitro experiments demonstrated similar results. In conclusion, KAE exerts neuroprotective effects against PD potentially by promoting autophagy via inhibiting the mTOR signaling pathway.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Neuronas Dopaminérgicas , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Ratones Endogámicos C57BL , Mamíferos/metabolismo
15.
J Mater Chem B ; 10(46): 9613-9621, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36331033

RESUMEN

The FDA-approved iron oxide nanocrystals (IONs), as negative magnetic resonance imaging contrast agents (MRICAs), face challenges because of their low relaxation rate and coherent ferromagnetism. Although research has found that metal doping is an efficient approach to improve the magnetic property and MRI contrast performance of IONs, their systemic mechanism has not been fully explained. Herein, we fabricated a series of transition-metal-doped IONs and systemically explored their sizes, structures, and variation in magnetic properties, revealing the oxygen vacancy-mediated MRI contrast enhancement mechanism of transition-metal-doped IONs. Based on these, we found that Zn-doped IONs possess optimal T2 MRI contrast performance and further investigated their potential to diagnose in vivo orthotopic tumor as a T2 contrast agent. The results indicate that the use of Zn-doped IONs significantly enhances T2-weighted MRI signal intensity of orthotopic prostate tumor with low toxicity, which is beneficial for the accurate diagnosis of orthotopic tumor. Collectively, this work clearly illustrates the mechanism of contrast enhancement of transition-metal-doped IONs and provides a novel paradigm for developing a highly efficient T2 contrast agent.


Asunto(s)
Nanopartículas del Metal , Neoplasias de la Próstata , Elementos de Transición , Humanos , Masculino , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/química , Neoplasias de la Próstata/diagnóstico por imagen , Iones
16.
Foods ; 11(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35954137

RESUMEN

This study assessed the impact of reducing dissolved oxygen (DO) content on the quality of UHT milk using a flash deoxygenation treatment. Flash deoxygenation was designed based on preheated milk reaching boiling early under low-pressure conditions to remove DO from the milk. Two parameters were designed for flash deoxygenation: preheating temperature 65 °C, -0.08 Mpa, and 70 °C, -0.06 Mpa. The flash conditions were applied to two UHT sterilization conditions (135 °C for 10 s and 145 °C for 5 s). After deoxygenation, the total oxidation (TOTOX) value of UHT milk was reduced by 1.4~1.71, and the protein carbonyl (PC) value was reduced by 1.15~1.52 nmol/mg of protein. The maximum inhibition rates of furusine and 5-HMF were 33.23 ± 1.72% and 25.43 ± 3.14%, respectively. The particle size was reduced by 0.141~0.178 µm. The ketones and stale aldehydes causing oxidized taste in the UHT milk were significantly reduced. This study showed that the oxidation and Maillard reactions of UHT milk were significantly inhibited, stability was improved, and the content of undesirable volatile flavor substances was reduced after flash deoxygenation. Therefore, reducing DO content was beneficial to improving the quality of UHT milk.

17.
Food Chem ; 395: 133576, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35802973

RESUMEN

This study investigated the Maillard reaction of infant formulas (IFs) produced by four thermal treatments during simulated consumption storage. Among the four sterilization conditions, seventy-five degrees, 2 min was considered the optimal sterilization treatment. The loss of available lysine, 3-DG content and FAST (fluorescence of advanced Maillard products and soluble tryptophan) index was lower in the initial IF produced by this treatment. After storage at 37 °C, 57% RH, the largest loss of available lysine was 71.41%. 5-hydroxymethylfurfural content increased to 7.28 mg/100 g with storage temperature and time, regardless of humidity. The content of α­dicarbonyl compounds fluctuated during storage, and it was estimated that the maximum daily intake was 7.05 mg for 3-deoxyglucuronide and 3.6 mg for glyoxal. The average Nε-carboxymethyllysine concentration during storage at 37 °C was 615.844 ng/mL. At 37 °C, 75% RH, the highest FAST index was 87.11% and ΔE* was 29.95. Compared with thermal treatment, unfavorable storage conditions further promote the occurrence of the Maillard reaction. In particular, the storage temperature should be strictly controlled.


Asunto(s)
Fórmulas Infantiles , Reacción de Maillard , Productos Finales de Glicación Avanzada , Glioxal , Humanos , Lactante , Lisina
18.
Nanomaterials (Basel) ; 12(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35745398

RESUMEN

Every year, a large amount of tobacco waste liquid (TWL) is discharged into the environment, resulting in serious pollution for the environment. In this work, a TWL-based particle (OACT) was fabricated by CaO, attapulgite (ATP), and TWL, and, then, OACT was coated by amino silicon oil (ASO) to form OACT@ASO. Therein, OACT@ASO had high controlled-release ability for fulvic acid (FA), because of the nanonetworks structure for ATP and the high content of FA in TWL. The release ratio (RR) of FA from OACT@ASO reached 94% at 75 h in deionized water, and 23% at 32 d in silica sand. Furthermore, the release mechanism of FA from OACT@ASO was consistent with the First-order law. Additionally, OACT@ASO also possessed high immobilization capacity for Cu(II), Cd(II), and Pb(II) (CCP) in soil. Notably, a pot experiment indicated that OACT@ASO could facilitate the growth of pakchoi seedlings and decrease the absorption of CCP by pakchoi seedlings. Thus, this study provides a new kind of organic fertilizer which could not only release FA, but also immobilize CCP in soil.

19.
ACS Appl Mater Interfaces ; 14(21): 24160-24173, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583352

RESUMEN

We explored the catalytic activity and magnetic resonance imaging (MRI) capacity of Cu-doped ultrasmall iron oxides with different doping ratios. Then, we screened a highly efficient ultrasmall active catalyst (UAC). Subsequently, a biodegradable magnetic nanoliposome was developed for multimodal cancer theranostics through pH-sensitive liposome coating of these UACs. Upon entering the body, the magnetic nanoliposomes significantly prolonged the metabolic time of UACs and promoted their accumulation in tumors. Then, the strong photothermal (PT) effect of the magnetic nanoliposome quickly ablated the tumor, showing promising PT therapy. Upon entering tumor cells, the magnetic nanoliposome rapidly degraded into many UACs and released chemotherapeutic drugs, contributing to chemotherapy. In addition, UACs not only catalyzed Fenton-type reaction to produce excessive reactive oxygen species (ROS) but also inhibited the synthesis of endogenous GSH by inactivating glutamyl cysteine ligase, contributing to cancer ferroptosis. Furthermore, the assembly-dissociation process of UACs showed the function of magnetic relaxation switches, significantly enhancing tumor MRI signal change, achieving a more accurate diagnosis of the tumor. Therefore, this magnetic nanoliposome splits into many UACs upon drug release and regulates the tumor microenvironment to overproduce ROS for enhanced synergistic tumor theranostics, which provides a strategy for developing next-generation magnetic catalysts with biodegradability and multimodal antitumor theranostics.


Asunto(s)
Nanopartículas , Microambiente Tumoral , Línea Celular Tumoral , Imagen por Resonancia Magnética , Terapia Fototérmica , Especies Reactivas de Oxígeno/metabolismo , Nanomedicina Teranóstica/métodos
20.
Langmuir ; 38(18): 5557-5567, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35451849

RESUMEN

Herein, a novel magnetic iron-based carbon microsphere was prepared by cohydrothermal treatment of tobacco waste liquid (TWL) and waste iron residue (WIR) to form WIR@TWL. After that, WIR@TWL was coated with sodium polyacrylate (S.P.) to fabricate WIR@TWL@SP, whose removal efficiency for bivalent cadmium (Cd(II)) was studied in water and soil. As a result, WIR@TWL@SP possessed a high Cd(II) removal efficiency, which could reach 98.5% within 2 h. The adsorption process was consistent with the pseudo-second-order kinetic model because of the higher value of adjusted R2 (0.99). The thermodynamic data showed that the adsorption process was spontaneous (ΔG° < 0) and exothermic (ΔH° = 32.42 KJ·mol-1 > 0). Cd(II) removal mechanisms also include cation exchange, electrostatic attraction, hydrogen-bond interaction, and cation-π interaction. Notably, pot experiments demonstrated that WIR@TWL@SP could effectively reduce Cd absorption by plants in water and soil. Thus, this study offers an effective method for remediating Cd(II)-contaminated water and soil and may have a practical application value.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cadmio/química , Carbono , Hierro/química , Cinética , Microesferas , Suelo , Nicotiana , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...