Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730833

RESUMEN

Flow-accelerated corrosion (FAC) preferentially attacks the downstream heat-affected zone of the root-pass weld in steam pipe systems. A detailed characterization identifies the fusion boundary as the initiation location for the attack. Alloying elements are found depleted along the weld fusion boundary, and multiple welding thermal cycles and repetitive austenite-to-ferrite phase transformations result in an increased proportion of grains with Goss {110}<001> texture along the fusion boundary. The synergistic effects of chemical segregation and the Schmid factor may contribute to the preferential initiation of FAC cracks along the root weld fusion boundary, making it the weakest link for FAC attack in steam pipe girth welds.

2.
J Integr Neurosci ; 23(3): 55, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38538213

RESUMEN

BACKGROUND: This study used bioinformatics combined with statistical methods to identify plasma biomarkers that can predict intracranial aneurysm (IA) rupture and provide a strong theoretical basis for the search for new IA rupture prevention methods. METHODS: We downloaded gene expression profiles in the GSE36791 and GSE122897 datasets from the Gene Expression Omnibus (GEO) database. Data were normalized using the "sva" R package and differentially expressed genes (DEGs) were identified using the "limma" R package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used for DEG function analysis. Univariate logistic regression analysis, least absolute shrinkage and selection operator (LASSO) regression modeling, and the support vector machine recursive feature elimination (SVM-RFE) algorithm were used to identify key biomarker genes. Data from GSE122897 and GSE13353 were extracted to verify our findings. RESULTS: Eight co-DEG mRNAs were identified in the GSE36791 and GSE122897 datasets. Genes associated with inflammatory responses were clustered in the co-DEG mRNAs in IAs. CD6 and C-C chemokine receptor 7 (CCR7) were identified as key genes associated with IA. CD6 and CCR7 were upregulated in patients with IA and their expression levels were positively correlated. There were significant differences in the infiltration of immune cells between IAs and normal vascular wall tissues (p < 0.05). A predictive nomogram was designed using this two-gene signature. Binary transformation of CD6 and CCR7 was performed according to the cut-off value to construct the receiver-operating characteristic (ROC) curve and showed a strong predictive ability of the CD6-CCR7 gene signature (p < 0.01; area under the curve (AUC): 0.90; 95% confidence interval (CI): 0.88-0.92). Furthermore, validation of this two-gene signature using the GSE122897 and GSE13353 datasets proved it to be valuable for clinical application. CONCLUSIONS: The identified two-gene signature (CD6-CCR7) for evaluating the risk of IA rupture demonstrated good clinical application value.


Asunto(s)
Aneurisma Intracraneal , Humanos , Receptores CCR7/genética , Aneurisma Intracraneal/genética , Algoritmos , Biología Computacional , Bases de Datos Factuales
3.
Small ; 20(12): e2307069, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37964340

RESUMEN

Optimizing the active centers through reconstruction is recognized as the key to construct high-performance oxygen evolution reaction (OER) catalysts. Herein, a simple and rapid in situ leaching strategy to promote the self-reconstruction of NiFe-layered double hydroxides (LDHs) catalysts is reported. The trace Zn dopants are introduced in advance by a facile and one-step hydrothermal method, followed by leaching over the electrochemical activation process, which can remarkably reduce the formation potential of NiFeOOH active centers to enable the deeper self-reconstruction for the formation of abundant highly active centers. Moreover, the self-restructured NiFeOOH-VZn cannot only significantly lower the dehydrogenation energy barrier for the transformation from Ni(OH)2 to NiOOH, but also decrease the free energy barrier of rate determining step for the *OH converted to *O through a deprotonation process, thus significantly boosting the OER behaviors. As a proof of concept, the obtained NiFeOOH-VZn catalyst just requires a low overpotential of 240 mV at 10 mA cm-2, and delivers robust stability at 50 mA cm-2 over 120 h, which outperforms the benchmark of noble metal RuO2 and those of most non-noble metal catalysts ever reported.

5.
Genomics ; 115(6): 110732, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866660

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a common invasive and pernicious cancer with a low five-year survival rate. To identify potential therapeutic targets, we first investigated the characteristics of cuproptosis genes (CUGs) in ESCC. The expression patterns of 10 CUGs (FDX1, LIPT1, LIAS, DLAT, DLD, PDHA1, PDHB, GLS, MTF1, and CDKN2A) were analyzed to identify ESCC-relevant targets. Weighted correlation network analysis (WGCNA) was performed to obtain CUG-related genes (CRGs). A total of seven differentially expressed genes were identified (FDX1, DLAT, LIAS, PDHB, MTF1, GLS, and CDKN2A). DLAT was upregulated in stage III, and LIPT1 was upregulated in N0 + N1 cancers. The high expression of CDKN2A, and PDHA1, was related to better overall survival, whereas the low expression of LIAS was related to better clinical outcomes. WGCNA was performed to get CUG-related genes (CRGs) and showed three key modules that related to FDX1, DLAT, and LIPT1. Moreover, CRGs (BTLA, CT47A1, and PRRX1) were selected to construct a risk score model in order to predict the survival and prognosis of patients with ESCC. Additionally, the cuproptosis score based on CUGs and a nomogram constructed based on it helped accurately predict the prognosis of patients with ESCC; thus, maybe it can be used for the clinical diagnosis of ESCC. The results also showed that milciclib might inhibit the proliferation and migration of KYSE150 and KYSE510 cells by targeting CDKN2A. In conclusion, the abovementioned CUGs and CRGs play a crucial role in tumorigenesis and cancer progression in ESCC, indicating their potential as therapeutic targets.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/genética , Carcinogénesis , Transformación Celular Neoplásica , Expresión Génica , Apoptosis , Proteínas de Homeodominio
6.
Materials (Basel) ; 16(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37895782

RESUMEN

In this study, 7075 aluminum alloy welding wire with TiB2 nanoparticle reinforcement as an additive together with the variable polarity TIG welding arc as a heat source were applied to produce thin-walled deposited layer samples. Results indicated that the performance of the deposited structure of 7075 aluminum alloy with a TiB2 reinforcement phase was significantly improved compared to the deposited structure of ordinary 7075 aluminum alloy welding wire. Meanwhile, the precipitation of the TiB2 reinforcement phase was insufficient within the structure, and the enhancing effect could not be fully exerted. Moreover, the 7-series aluminum alloy contained a large amount of Zn and Mg elements inside. If the soluble crystalline phase was not fully dissolved, severe stress corrosion could be caused, which inevitably led to a decrease in the mechanical properties. To further improve the performance of the deposited layer, a T6 heat treatment process was performed at 470 °C for 2 h, followed by rapid cooling with distilled water and artificial aging at 120 °C for 24 h. After heat treatment, many second phases appeared in the microstructure of the deposited layer, and the tensile strength increased from (361.8 ± 4.8) MPa to (510.2 ± 5.4) MPa together with the elongation which increased from (9.5 ± 0.5) % to (10.2 ± 0.4) %. The fracture mode of the fracture was a ductile fracture along grain boundaries. The microhardness increased from (145 ± 5) HV to (190 ± 4) HV and exhibited good corrosion resistance in a 3.5% NaCl solution corrosion test.

7.
Mol Oncol ; 17(11): 2451-2471, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37753805

RESUMEN

During malignant tumour development, the extracellular matrix (ECM) is usually abnormally regulated. Dysregulated expression of lysyl oxidase-like 2 (LOXL2), matrix metalloproteinase 9 (MMP9) and lipocalin 2 (LCN2) are associated with ECM remodelling. In this study, protein-protein interaction assays indicated that LCN2 and LOXL2 interactions and LCN2 and MMP9 interactions occurred both intracellularly and extracellularly, but interactions between LOXL2 and MMP9 only occurred intracellularly. The LCN2/LOXL2/MMP9 ternary complex promoted migration and invasion of oesophageal squamous cell carcinoma (ESCC) cells, as well as tumour growth and malignant progression in vivo, while the iron chelator deferoxamine mesylate (DFOM) inhibited ESCC tumour growth. Co-overexpression of LCN2, LOXL2 and MMP9 enhanced the ability of tumour cells to degrade fibronectin and Matrigel, increased the formation and extension of filopodia, and promoted the rearrangement of microfilaments through upregulation of profilin 1. In addition, the LCN2/LOXL2/MMP9 ternary complex promoted the expression of testican-1 (SPOCK1), and abnormally activated the FAK/AKT/GSK3ß signalling pathway. In summary, the LCN2/LOXL2/MMP9 ternary complex promoted the migration and invasion of cancer cells and malignant tumour progression through multiple mechanisms and could be a potential therapeutic target.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Lipocalina 2/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Transducción de Señal , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteoglicanos/metabolismo , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo
8.
J Matern Fetal Neonatal Med ; 36(2): 2258257, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37722705

RESUMEN

BACKGROUND: Very preterm infants born small for gestational age (SGA) are at risk for short- and long-term excess mortality and morbidity resulting from immaturity and deficient intrauterine growth. However, previous findings are inconclusive, and there is a paucity of contemporary data in Chinese population. OBJECTIVES: To evaluate the excess risks of mortality and morbidity independently associated with SGA birth in very preterm (before 32 weeks of gestation) Chinese infants. MATERIALS AND METHODS: The study population included all very preterm infants admitted to the neonatal intensive care units (NICUs) in our hospital and our medical treatment partner hospitals during a 6-year period. The SGA group consisted of 615 SGA infants, and 1230 appropriate-for-gestation-age (AGA) infants were matched with GA and sex as controls at a ratio of 2:1. The associations between SGA birth and outcomes (in-hospital mortality and morbidity) were evaluated by using multivariate logistic regression analysis after adjustment for potential confounders. The CRIBII score was used to indicate admission illness severity, acting as a covariate in the multivariate analysis. RESULTS: The SGA group was associated with increased risks of mortality [odds ratio (OR) 2.12; 95% CI: 1.27-3.54] and BPD [OR 1.95; 95% CI: 1.58-2.41] compared to the AGA group. No significant incidences of respiratory distress syndrome (RDS), severe retinopathy of prematurity (sROP), severe intraventricular hemorrhage (sIVH), and necrotizing enterocolitis (NEC) were observed in the SGA group. Further GA-stratified subgroup analysis showed SGA status exhibited certain patterns of effects on mortality and morbidity in different GA ranges. CONCLUSIONS: SGA status is associated with excess risks of neonatal mortality and BPD in very preterm infants, but the increased risks of mortality and morbidity are not homogeneous in different GA ranges. The contemporary data can help inform perinatal care decision-making and family counseling, particularly for very preterm SGA neonates.


Asunto(s)
Recien Nacido Extremadamente Prematuro , Enfermedades del Recién Nacido , Enfermedades del Prematuro , Recién Nacido Pequeño para la Edad Gestacional , Recién Nacido de muy Bajo Peso , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Pueblos del Este de Asia , Enfermedades del Recién Nacido/mortalidad , Enfermedades del Prematuro/epidemiología , Enfermedades del Prematuro/mortalidad , Morbilidad
9.
Cell ; 186(20): 4454-4471.e19, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37703875

RESUMEN

Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.


Asunto(s)
Macrófagos , Humanos , Diferenciación Celular , Linaje de la Célula , Macrófagos/citología , Microglía , Especificidad de Órganos
10.
J Nanobiotechnology ; 21(1): 297, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37626360

RESUMEN

Glioblastoma is the most common type of brain tumor. Due to the presence of the blood-brain barrier, the effects of chemotherapy have been unsatisfactory. The combination of focused ultrasound and microbubbles to reversibly open the blood-brain barrier is now considered a key factor in improving treatment outcomes of glioblastoma. In this study, we developed bionic drug delivery microbubbles, which in combination with focused ultrasound had an obvious inhibitory effect on glioblastoma. We extracted the brain microvascular cell membranes, combined them with lipid components, and loaded them with superparamagnetic iron oxide and doxorubicin to prepare biomimetic drug delivery microbubbles (FeDOX@cellMBs). We demonstrated that FeDOX@cellMBs retained the intrinsic properties of loading, such as magnetic properties and drug toxicity, both in vitro and in vivo. FeDOX@cellMBs exhibited good tumor targeting and uptake under the combined action of magnetic and focused ultrasound. Importantly, the FeDOX@cellMBs demonstrated excellent internal stability and effectively inhibited tumor growth in orthotopic glioblastoma mice. Finally, organ H&E staining confirmed that FeDOX@cellMBs were safe for use. In conclusion, FeDOX@cellMBs successfully penetrated the blood-brain barrier and effectively inhibited glioblastoma growth under the combined effects of focused ultrasound and magnetic stimulation. These results provide a new approach for the treatment of glioblastoma, with implications for future clinical translation.


Asunto(s)
Glioblastoma , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Barrera Hematoencefálica , Biomimética , Microburbujas , Fenómenos Magnéticos
11.
Acta Pharm Sin B ; 13(6): 2765-2777, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425035

RESUMEN

Oligoasthenospermia is the primary cause of infertility. However, there are still enormous challenges in the screening of critical candidates and targets of oligoasthenospermia owing to its complex mechanism. In this study, stem cell factor (SCF), c-kit, and transient receptor potential vanilloid 1 (TRPV1) biosensors were successfully established and applied to studying apoptosis and autophagy mechanisms. Interestingly, the detection limit reached 2.787 × 10-15 g/L, and the quantitative limit reached 1.0 × 10-13 g/L. Furthermore, biosensors were used to investigate the interplay between autophagy and apoptosis. Schisandrin A is an excellent candidate to form a system with c-kit similar to SCF/c-kit with a detection constant (KD) of 5.701 × 10-11 mol/L, whereas it had no affinity for SCF. In addition, it also inhibited autophagy in oligoasthenospermia through antagonizing TRPV1 with a KD of up to 4.181 × 10-10 mol/L. In addition, in vivo and in vitro experiments were highly consistent with the biosensor. In summary, high-potency schisandrin A and two potential targets were identified, through which schisandrin A could reverse the apoptosis caused by excessive autophagy during oligoasthenospermia. Our study provides promising insights into the discovery of effective compounds and potential targets via a well-established in vitro-in vivo strategy.

12.
Micromachines (Basel) ; 14(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37374771

RESUMEN

Human epidermal growth factor receptor-3 (HER-3) plays a key role in the growth and metastasis of cancer cells. The detection of HER-3 is very important for early screening and treatment of cancer. The AlGaN/GaN-based ion-sensitive heterostructure field effect transistor (ISHFET) is sensitive to surface charges. This makes it a promising candidate for the detection of HER-3. In this paper, we developed a biosensor for the detection of HER-3 with AlGaN/GaN-based ISHFET. The AlGaN/GaN-based ISHFET biosensor exhibits a sensitivity of 0.53 ± 0.04 mA/dec in 0.01 M phosphate buffer saline (1× PBS) (pH = 7.4) solution with 4% bovine serum albumin (BSA) at a source and drain voltage of 2 V. The detection limit is 2 ng/mL. A higher sensitivity (2.20 ± 0.15 mA/dec) can be achieved in 1× PBS buffer solution at a source and drain voltage of 2 V. The AlGaN/GaN-based ISHFET biosensor can be used for micro-liter (5 µL) solution measurements and the measurement can be performed after incubation of 5 min.

13.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2841-2855, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381947

RESUMEN

Focusing on the development and quality improvement strategy of the traditional Chinese medicine(TCM) industry, the scientific and technological innovation of the new engineering of TCM should be paid attention to solve the "stuck neck" dilemma. Under the background of the ecological and industrial revolution of the scientific and technological innovation system, the super-scale information interaction and multi-dimensional integration will inevitably lead to profound changes in the manufacturing mode of TCM. Manufacturing measurement of TCM is formed on the basis of the reliability engineering theory of process control of TCM production. It is the development extension of system theory and system science ideas and a cross-fertilization discipline that combines theory with practice and adheres to the "four-oriented" re-epistemology improvement of the TCM discipline. In response to the problems of complex raw material sources, coarse process technology, unclear material basis, and poor applicability of equipment and technology in the manufacture of TCM, the transformation research mode of "aiming at the integration of pharmaceutical industry-developing intelligent production line-enabling industrial transformation" has been developed. This paper proposed the four key engineering technical problems, i.e., the identification of critical quality attributes(CQA) in the manufacture of TCM, the quality by design(QbD) and product development of the manufacturing process of TCM, the quality transfer principle and multivariate process capability index of TCM manufacturing, and the development of measurement technology and equipment of the manufacturing measurement of TCM, to achieve the systematization of quality control indicators, real-time process control, digitalization of manufacturing process, transparency of quality transfer, and intelligent whole-process control. In this paper, the new concepts, new theories, and new technologies provide a reference for the industrialization of TCM.


Asunto(s)
Comercio , Medicina Tradicional China , Reproducibilidad de los Resultados , Industria Farmacéutica , Control de Calidad
14.
Acta Pharm Sin B ; 13(5): 2188-2201, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37250167

RESUMEN

Smart manufacturing still remains critical challenges for pharmaceutical manufacturing. Here, an original data-driven engineering framework was proposed to tackle the challenges. Firstly, from sporadic indicators to five kinds of systematic quality characteristics, nearly 2,000,000 real-world data points were successively characterized from Ginkgo Folium tablet manufacturing. Then, from simplex to the multivariate system, the digital process capability diagnosis strategy was proposed by multivariate Cpk integrated Bootstrap-t. The Cpk of Ginkgo Folium extracts, granules, and tablets were discovered, which was 0.59, 0.42, and 0.78, respectively, indicating a relatively weak process capability, especially in granulating. Furthermore, the quality traceability was discovered from unit to end-to-end analysis, which decreased from 2.17 to 1.73. This further proved that attention should be paid to granulating to improve the quality characteristic. In conclusion, this paper provided a data-driven engineering strategy empowering industrial innovation to face the challenge of smart pharmaceutical manufacturing.

15.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36358761

RESUMEN

UM-164 is a dual inhibitor of c-Src and p38 MAPK, and has been a lead compound for targeting triple-negative breast cancer. UM-164 shows stronger binding to the active sites of Src compared with the conventional Src inhibitor Dasatinib. While Dasatinib has displayed some inhibitory effects on glioma growth in clinical trials, whether UM-164 can suppress glioma growth has not been reported. Here we show that UM-164 suppressed the proliferation, migration and spheroid formation of glioma cells, and induced cell cycle arrest in the G1 phase. Moreover, UM-164 triggered YAP translocation to the cytoplasm and reduced the activity of YAP, as evidenced by a luciferase assay. Accordingly, UM-164 markedly decreased the expression levels of YAP target genes CYR61 and AXL. Importantly, ectopic expression of wild-type YAP or YAP-5SA (YAP constitutively active mutant) could rescue the anti-proliferative effect induced by UM-164. Intriguingly, p38 MAPK appears to play a greater role than Src in UM-164-mediated inhibition of YAP activity. Furthermore, the in vitro anti-glioma effect mediated by UM-164 was confirmed in a xenograft glioma model. Together, these findings reveal a mechanism by which UM-164 suppresses the malignant phenotypes of glioma cells and might provide a rationale for UM-164-based anti-glioma clinical trials.

16.
Micromachines (Basel) ; 13(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36363857

RESUMEN

Optrodes, which are single shaft neural probes integrated with microelectrodes and optical light sources, offer a remarkable opportunity to simultaneously record and modulate neural activities using light within an animal's brain; however, a common problem with optrodes is that stimulation artifacts can be observed in the neural recordings of microelectrodes when the light source on the optrode is activated. These stimulation artifacts are undesirable contaminants, and they cause interpretation complexity when analyzing the recorded neural activities. In this paper, we tried to mitigate the effects of the stimulation artifacts by developing a low-noise, double-sided optrode integrated with multiple Electromagnetic Shielding (EMS) layers. The LED and microelectrodes were constructed separately on the top epitaxial and bottom substrate layers, and EMS layers were used to separate the microelectrodes and LED to reduce signal cross-talks. Compared with conventional single-sided designs, in which the LED and microelectrodes are constructed on the same side, our results indicate that double-sided optrodes can significantly reduce the presence of stimulation artifacts. In addition, the presence of stimulation artifacts can further be reduced by decreasing the voltage difference and increasing the rise/fall time of the driving LED pulsed voltage. With all these strategies, the presence of stimulation artifacts was significantly reduced by ~76%. As well as stimulation suppression, the sapphire substrate also provided strong mechanical stiffness and support to the optrodes, as well as improved electronic stability, thus making the double-sided sapphire optrodes highly suitable for optogenetic neuroscience research on animal models.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36315112

RESUMEN

Lead-free perovskite has attracted great attention in realizing high-performance optoelectronic devices due to their excellent atmospheric stability and nontoxic characteristics. Although a pronounced ion migration effect has been observed in this new class of materials, its potential in enhancing the overall device performance is yet to be fully explored. In this work, we studied the effect of ion migrations on the carrier transport behavior and found that the recoverable migration process can contribute to enhancing the on/off ratio in a lead-free CsCu2I3 single-crystal microrod-based photodetector. In detail, we synthesized CsCu2I3 single-crystal microrods via an in-plane self-assembly supersaturated crystallization approach. These microrods with well-defined morphologies were then used to construct ultraviolet (UV)-band photodetectors, which outperform most reported lead-free perovskite photodetectors based on individual single crystals. Simultaneously, ion migration can result in asymmetric band bending in the two-terminal device, as confirmed by surface potential profiling with Kelvin probe force microscopy (KPFM). Such an effect can be harnessed to increase the on/off ratio by almost an order of magnitude. Furthermore, the lead-free CsCu2I3 single crystal exhibits excellent thermal and air stabilities. These findings demonstrate that the CsCu2I3 single-crystal microrods can be used in stable and efficient photodetection, and the ion migration effect can potentially be utilized for improving the optoelectronic performance of lead-free devices.

18.
ACS Nano ; 16(8): 13199-13210, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35938940

RESUMEN

Aqueous electrochromic battery (ECB) is a multifunctional technology that shows great potential in various applications including energy-saving buildings and wearable batteries with visible energy levels. However, owing to the mismatch between traditional electrochromic materials and the electrolyte, aqueous ECBs generally exhibit poor cycling stability which bottlenecks their practical commercialization. Herein, we present an ultrastable electrochromic system composed of lithium titanate (Li4Ti5O12, LTO) electrode and Al3+/Zn2+ hybrid electrolyte. The fully compatible system exhibits excellent redox reaction reversibility, thus leading to extremely high cycling stabilities in optical contrast (12 500 cycles with unnoticeable degradation) and energy storage (4000 cycles with 82.6% retention of capacity), superior electrochromic performances including high optical contrast (∼74.73%) and fast responses (4.35 s/7.65 s for bleaching/coloring), as well as excellent discharge areal capacity of 151.94 mAh m-2. The extraordinary cycling stability can be attributed to the robust [TiO6] octahedral frameworks which remain chemically active even upon the gradual substitution of Li+ with Al3+ in LTO over multiple operation cycles. The high-performance electrochromic system demonstrated here not only makes the commercialization of low-cost, high-safety aqueous-based electrochromic devices possible but also provides potential design guidance for LTO-related materials used in aqueous-based energy storage devices.

19.
Materials (Basel) ; 15(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36013654

RESUMEN

In this investigation, 1060Al/AZ31B welded joints were obtained by magnetic pulse welding technique. In order to test the microstructure and mechanical properties of the joints, the welded joints were annealed at different temperatures and then examined by optical microscopy (OM), scanning electron microscopy (SEM), energy spectrum analysis (EDS) and mechanical properties testing. The testing results of the welded joints annealed at different temperatures showed that the Al-Mg MPW welded joints were well bonded. The changing of the microstructure and mechanical properties of Al/Mg welded joints was not apparent under the temperature of 200 °C. However, Al12Mg17 intermetallic compound layer formed at 200 °C. Al12Mg17 and Al3Mg2 intermetallic compound layers formed at the temperature of 300 °C. The diffusion rate of Mg and Al elements is proportional to the annealing temperature and the intermetallic compounds layer is gradually formed. The microhardness near the interface decreased first and then increased on account of the brittleness of intermetallic compounds. In the tensile shear tests, the fracture mechanism of Al/Mg MPW welded joints were analyzed. When the temperature was lower than 200 °C the joints did not crack. At 200 °C and 250 °C, the joints fracture along the Al12Mg17-Al interface. The joint cracks along the interface of Al12Mg17-Al3Mg2 at the temperature of 300 °C.

20.
Micromachines (Basel) ; 13(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893171

RESUMEN

Traditional GaAs-based frequency multipliers still exhibit great challenges to meet the demand for solid-state high-power THz sources due to low breakdown voltage and heat dissipation of the Schottky barrier diode (SBD). In this study, a GaN SBD chain was fabricated with n-/n+-GaN structure. As a consequence, the breakdown voltage of 54.9 V at 1 µA and cut-off frequency of 587.5 GHz at zero bias were obtained. A 120 GHz frequency-doubler module based on the GaN SBD chain was designed and fabricated. When driven with 500 mW input power in a continuous wave, the output power of the frequency-doubler module was 15.1 mW at 120 GHz. Moreover, the experiments show that the frequency-doubler module can endure an input power of 2 W. In addition, it is worth noting that the SBD chain works well at an anode temperature of 337.2 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...