Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 78(7): 1701-1704, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37248737

RESUMEN

BACKGROUND: As WGS comes of age, changes in EU legislation implemented in 2021 allow its usage for systematic monitoring of ESBL-producing Escherichia coli from livestock and meat, replacing phenotypic testing. Presently, phenotypic testing correlates well with antimicrobial resistance predicted from WGS data. WGS has added value in the wealth of additional information that is present in the data. OBJECTIVES: In this study we have detected the resistance phenotypes for a panel of antimicrobials while also analysing the molecular epidemiology of ESBL-producing E. coli. METHODS: Susceptibility testing was performed with broth microdilution of selectively isolated E. coli. Short-read WGS was performed in parallel and phenotypes predicted based on the sequence data, which was also used to determine the phylogeny of the isolates. RESULTS: The phenotypically determined resistance and the predicted resistance correlated 90%-100% for the different antimicrobial classes. Furthermore, clonal relationships were detected amongst ESBL-producing E. coli within livestock sectors and the meat produced by this sector. CONCLUSIONS: Further implementation of WGS analysis of ESBL/AmpC-producing E. coli within the AMR monitoring programme of EU member states and global surveillance programmes will contribute to determining the attribution of livestock in the prevalence of ESBL/AmpC-encoding E. coli in humans.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Humanos , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Ganado , beta-Lactamasas/genética , Antibacterianos/farmacología , Carne
2.
Front Microbiol ; 14: 1147137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089559

RESUMEN

Introduction: Listeriosis, caused by infection with Listeria monocytogenes (Lm), is a relatively rare but severe disease with one of the highest mortality rates among bacterial foodborne illnesses. A better understanding on the degree of Lm clustering, the temporal distribution of the clusters, and their association with the various food sources is expected to lead to improved source tracing and risk-based sampling. Methods: We investigated the genomic epidemiology of Lm in the Netherlands between 2010 and 2020 by analyzing whole-genome-sequencing (WGS) data of isolates from listerioss patients and food sources from nationwide integrated surveillance and monitoring. WGS data of 756 patient and 770 food/environmental isolates was assessed using core-genome multi-locus sequence typing (cgMLST) with Hamming distance as measure for pairwise distances. Associations of genotype with the epidemiological variables such as patient's age and gender, and systematic use of specific drugs were tested by multinomial logistic regressions. Genetic differentiation of the Lm within and between food categories was calculated based on allele frequencies at the 1701 cgMLST loci in each food category. Results: We confirmed previous results that some clonal complexes (CCs) are overrepresented among clinical isolates but could not identify any epidemiological risk factors. The main findings of this study include the observation of a very weak attribution of Lm types to food categories and a much better attribution to the producer level. In addition, we identified a high degree of temporal persistence of food, patient and mixed clusters, with more than half of the clusters spanning over more than 1 year and up to 10 years. Discussion: Taken together this would indicate that identifying persistent contamination in food production settings, and producers that process a wide variety of raw food produce, could significantly contribute to lowering the Lm disease burden.

3.
Commun Med (Lond) ; 2: 135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36317053

RESUMEN

Background: Although the Netherlands is a country with a low endemic level of methicillin-resistant Staphylococcus aureus (MRSA), a national MRSA surveillance has been in place since 1989. In 2003 livestock emerged as a major reservoir of MRSA and currently livestock-associated MRSA (clonal complex CC398) make up 25% of all surveillance isolates. To assess possible transfer of resistant strains or resistance genes, MRSA obtained from humans and animals were characterized in detail. Methods: The sequenced genomes of 6327 MRSA surveillance isolates from humans and from 332 CC398 isolates from livestock-related samples were analyzed and resistance genes were identified. Several isolates were subjected to long-read sequencing to reconstruct chromosomes and plasmids. Results: Here we show the presence of the multi-resistance gene cfr in seven CC398 isolates obtained from humans and in one CC398 isolate from a pig-farm dust sample. Cfr induces resistance against five antibiotic classes, which is true for all but two isolates. The isolates are genetically unrelated, and in seven of the isolates cfr are located on distinct plasmids. The fexA gene is found in 3.9% surveillance isolates and in 7.5% of the samples from livestock. There is considerable sequence variation of fexA and geographic origin of the fexA alleles. Conclusions: The rare cfr and fexA resistance genes are found in MRSA from humans and animals in the Netherlands, but there is no evidence for spread of resistant strains or resistance plasmids. The proportion of cfr-positive MRSA is low, but its presence is worrying and should be closely monitored.

4.
Sci Data ; 9(1): 190, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484273

RESUMEN

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Listeria monocytogenes , Listeriosis , Animales , Ecosistema , Enfermedades Transmitidas por los Alimentos/microbiología , Listeria monocytogenes/genética , Listeriosis/epidemiología , Listeriosis/microbiología
5.
Vet Microbiol ; 258: 109120, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34020175

RESUMEN

Salmonella Infantis is a poultry-adapted Salmonella enterica serovar that is increasingly reported in broilers and is also regularly identified among human salmonellosis cases. An emerging S. Infantis mega-plasmid (pESI), carrying fitness, virulence and antimicrobial resistance genes, is also increasingly found. We investigated the prevalence, genetic characteristics and risk factors for (pESI-carrying) S. Infantis in broilers. Faecal samples from 379 broiler flocks (in 198 farms with ≥3000 birds) in the Netherlands were tested. A questionnaire about farm characteristics was also administered. Sampling was performed in July 2018-May 2019, three weeks before slaughter. Fourteen flocks (in 10 farms) were S. Infantis-positive, resulting in a 3.7 % flock-level and 5.1 % farm-level prevalence. Based on multi-locus sequence typing (MLST), all isolates belonged to sequence type 32. All but one isolate carried a pESI-like mega-plasmid. Core-genome MLST showed considerable heterogeneity among the isolates, even within the same farm, with a few small clusters detected. The typical pESI-borne multi-resistance pattern to aminoglycosides, sulphonamide and tetracycline (93 %), as well as trimethoprim (71 %), was found. Additionally, resistance to (fluoro)quinolones based on gyrA gene mutations was detected. S. Infantis was found more often in flocks using salinomycin as coccidiostat, where flock thinning was applied or litter quality was poor, whereas employing external cleaning companies, wheat in feed, and vaccination against infectious bronchitis, were protective. Suggestive evidence for vertical transmission from hatcheries was found. A heterogeneous (pESI-carrying) S. Infantis population has established itself in Dutch broiler flocks, calling for further monitoring of its spread and a comprehensive appraisal of control options.


Asunto(s)
Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Salmonella enterica/clasificación , Salmonella enterica/genética , Animales , Antibacterianos/farmacología , Pollos , Farmacorresistencia Bacteriana Múltiple , Países Bajos/epidemiología , Vigilancia de la Población , Enfermedades de las Aves de Corral/epidemiología , Prevalencia , Factores de Riesgo , Salmonelosis Animal/epidemiología , Salmonella enterica/efectos de los fármacos
6.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310721

RESUMEN

Aeromonas is included in the Dutch Drinking Water Decree as an indicator for elevated microbial regrowth in non-chlorinated drinking water distribution systems (DWDS). The temporal and spatial diversity of Aeromonas species in ten DWDS and their planktonic growth characteristics for different carbon sources was investigated. Genotyping of the gyrB gene of isolates showed a non-systematic temporal and spatial variable prevalence of seven different Aeromonas species in these DWDS and no correlation with AOC-P17/NOX and Aeromonas concentrations. Pure cultures of these seven species showed a high affinity to low concentrations (µg/L) of individual amino acids and fatty acids, compounds associated with biomass. Growth occurred at 0.5 µg-C/L of an amino acid mixture. Growth of a mixed community of A. rivuli, A. salmonicida, A. sobria and A. veronii in drinking water occurred in pasteurized samples, however, no growth and decay occurred in competition with the autochthonous bacteria (non-pasteurized samples). This community also failed to grow in non-pasteurized distribution samples from a location with clear increase in planktonic Aeromonas concentrations in the transported drinking water. For competitive planktonic growth of Aeromonas an amino acid concentration of ≥5 µg-C/L is required. AOC-P17/NOX concentrations showed that such concentrations are not expected in Dutch drinking water. Therefore, we suspect that competitive planktonic growth is not the major cause of the observed non-compliance with the Aeromonas standard in non-chlorinated DWSD.Importance The occurrence of the bacterial genus Aeromonas in non-chlorinated drinking water in the Netherlands is regarded as an indication for elevated microbial regrowth in the distribution system. Identification of the prevalent species in ten distribution systems by genotyping yielded seven different species, with A. rivuli, A. veronii and A. sobria as the most dominant ones. Planktonic growth experiments of pure cultures confirmed former published affinity of Aeromonas for certain biomass compounds (amino and fatty acids). In competition with the autochthonous microflora, however, planktonic growth was not observed, only after addition of a threshold amino acid concentration of 5 µg-C/L. Based on our results and further observations we deduced that planktonic growth of Aeromonas in the DWDS is not very likely. Benthic growth in loose deposits and planktonic release is a more plausible explanation for the observed planktonic increase of Aeromonas.

7.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062459

RESUMEN

Legionella pneumophila in potable water installations poses a potential health risk, but quantitative information about its replication in biofilms in relation to water quality is scarce. Therefore, biofilm formation on the surfaces of glass and chlorinated polyvinyl chloride (CPVC) in contact with tap water at 34 to 39°C was investigated under controlled hydraulic conditions in a model system inoculated with biofilm-grown L. pneumophila The biofilm on glass (average steady-state concentration, 23 ± 9 pg ATP cm-2) exposed to treated aerobic groundwater (0.3 mg C liter-1; 1 µg assimilable organic carbon [AOC] liter-1) did not support growth of the organism, which also disappeared from the biofilm on CPVC (49 ± 9 pg ATP cm-2) after initial growth. L. pneumophila attained a level of 4.3 log CFU cm-2 in the biofilms on glass (1,055 ± 225 pg ATP cm-2) and CPVC (2,755 ± 460 pg ATP cm-2) exposed to treated anaerobic groundwater (7.9 mg C liter-1; 10 µg AOC liter-1). An elevated biofilm concentration and growth of L. pneumophila were also observed with tap water from the laboratory. The Betaproteobacteria Piscinibacter and Methyloversatilis and amoeba-resisting Alphaproteobacteria predominated in the clones and isolates retrieved from the biofilms. In the biofilms, the Legionella colony count correlated significantly with the total cell count (TCC), heterotrophic plate count, ATP concentration, and presence of Vermamoeba vermiformis This amoeba was rarely detected at biofilm concentrations of <100 pg ATP cm-2 A threshold concentration of approximately 50 pg ATP cm-2 (TCC = 1 × 106 to 2 × 106 cells cm-2) was derived for growth of L. pneumophila in biofilms.IMPORTANCELegionella pneumophila is the etiologic agent in more than 10,000 cases of Legionnaires' disease that are reported annually worldwide and in most of the drinking water-associated disease outbreaks reported in the United States. The organism proliferates in biofilms on surfaces exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter-1 of organic carbon) induced a low biofilm concentration that supported no or very limited growth of L. pneumophila Elevated biofilm concentrations and L. pneumophila colony counts were observed on surfaces exposed to two types of extensively treated groundwater, containing 1.8 and 7.9 mg C liter-1 and complying with the microbial water quality criteria during distribution. Control measures in warm tap water installations are therefore essential for preventing growth of L. pneumophila.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Agua Potable/microbiología , Agua Dulce/microbiología , Legionella pneumophila/crecimiento & desarrollo , Microbiología del Agua , Abastecimiento de Agua , Amoeba/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Adhesión Bacteriana , Biomasa , Recuento de Colonia Microbiana , Cobre , Desinfectantes , Agua Dulce/química , Vidrio , Calor , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/fisiología , Enfermedad de los Legionarios/prevención & control , Níquel , Propiedades de Superficie
9.
Appl Environ Microbiol ; 82(22): 6691-6700, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27613680

RESUMEN

Legionella pneumophila proliferates in freshwater environments at temperatures ranging from 25 to 45°C. To investigate the preference of different sequence types (ST) for a specific temperature range, growth of L. pneumophila serogroup 1 (SG1) ST1 (environmental strains), ST47, and ST62 (disease-associated strains) was measured in buffered yeast extract broth (BYEB) and biofilms grown on plasticized polyvinyl chloride in flowing heated drinking water originating from a groundwater supply. The optimum growth temperatures in BYEB were approximately 37°C (ST1), 39°C (ST47), and 41°C (ST62), with maximum growth temperatures of 42°C (ST1) and 43°C (ST47 and ST62). In the biofilm at 38°C, the ST47 and ST62 strains multiplied equally well compared to growth of the environmental ST1 strain and an indigenous L. pneumophila non-SG1 strain, all attaining a concentration of approximately 107 CFU/cm-2 Raising the temperature to 41°C did not impact these levels within 4 weeks, but the colony counts of all strains tested declined (at a specific decline rate of 0.14 to 0.41 day-1) when the temperature was raised to 42°C. At this temperature, the concentration of Vermamoeba vermiformis in the biofilm, determined with quantitative PCR (qPCR), was about 2 log units lower than the concentration at 38°C. In columns operated at a constant temperature, ranging from 38 to 41°C, none of the tested strains multiplied in the biofilm at 41°C, in which also V. vermiformis was not detected. These observations suggest that strains of ST47 and ST62 did not multiply in the biofilm at a temperature of ≥41°C because of the absence of a thermotolerant host. IMPORTANCE: Growth of Legionella pneumophila in tap water installations is a serious public health concern. The organism includes more than 2,100 varieties (sequence types). More than 50% of the reported cases of Legionnaires' disease are caused by a few sequence types which are very rarely detected in the environment. Strains of selected virulent sequence types proliferated in biofilms on surfaces exposed to warm (38°C) tap water to the same level as environmental varieties and multiplied well as pure culture in a nutrient-rich medium at temperatures of 42 and 43°C. However, these organisms did not grow in the biofilms at temperatures of ≥41°C. Typical host amoebae also did not multiply at these temperatures. Apparently, proliferation of thermotolerant host amoebae is needed to enable multiplication of the virulent L. pneumophila strains in the environment at elevated temperatures. The detection of these amoebae in water installations therefore is a scientific challenge with practical implications.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Agua Potable/microbiología , Legionella pneumophila/crecimiento & desarrollo , Abastecimiento de Agua , Medios de Cultivo/química , Hartmannella/genética , Hartmannella/crecimiento & desarrollo , Calor , Humanos , Legionella pneumophila/clasificación , Legionella pneumophila/genética , Legionella pneumophila/fisiología , Enfermedad de los Legionarios/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Temperatura
10.
Appl Environ Microbiol ; 77(20): 7321-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21873489

RESUMEN

The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in all three supplies. Operational taxonomic units (OTUs) with the highest similarity to the potential or candidate hosts Acanthamoeba spp., Echinamoeba exundans, E. thermarum, and an Neoparamoeba sp. were detected as well. In total, 59 OTUs of FLP were identified. The estimated protozoan richness did not differ significantly between the three supplies. In supply CA-1, the concentration of H. vermiformis correlated with the concentration of Legionella spp. and clones related to Amoebozoa predominated (82%) in the protozoan community. These observations, the low turbidity (<0.2 nephelometric turbidity units [NTU]), and the varying ATP concentrations (1 to 12 ng liter(-1)) suggest that biofilms promoted protozoan growth in this supply. Ciliophora represented 25% of the protozoan OTUs in supply CA-2 with elevated ATP concentrations (maximum, 55 ng liter(-1)) correlating with turbidity (maximum, 62 NTU) caused by corroding iron pipes. Cercozoan types represented 70% of the protozoan clones in supply CA-3 with ATP concentrations of <1 ng liter(-1) and turbidity of <0.5 NTU in most samples of distributed water. The absence of H. vermiformis in most samples from supply CA-3 suggests that growth of this protozoan is limited at ATP concentrations of <1 ng liter(-1).


Asunto(s)
Amebozoos/aislamiento & purificación , Cercozoos/aislamiento & purificación , Cilióforos/aislamiento & purificación , Agua Potable/microbiología , Agua Potable/parasitología , Legionella/aislamiento & purificación , Calidad del Agua , Adenosina Trifosfato/análisis , Amebozoos/clasificación , Amebozoos/genética , Región del Caribe , Cercozoos/clasificación , Cercozoos/genética , Cilióforos/clasificación , Cilióforos/genética , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Agua Potable/química , Genes de ARNr , Legionella/clasificación , Legionella/genética , Datos de Secuencia Molecular , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
11.
Appl Environ Microbiol ; 77(2): 634-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21097586

RESUMEN

Two unchlorinated drinking water supplies were investigated to assess the potential of water treatment and distribution systems to support the growth of Legionella spp. The treatment plant for supply A distributed treated groundwater with a low concentration (<0.5 ppm of C) of natural organic matter (NOM), and the treatment plant for supply B distributed treated groundwater with a high NOM concentration (8 ppm of C). In both supplies, the water temperature ranged from about 10°C after treatment to 18°C during distribution. The concentrations of Legionella spp. in distributed water, analyzed with quantitative PCR (Q-PCR), averaged 2.9 (± 1.9) × 10(2) cells liter(-1) in supply A and 2.5 (± 1.6) × 10(3) cells liter(-1) in supply B. No Legionella was observed with the culture method. A total of 346 clones (96 operational taxonomical units [OTUs] with ≥97% sequence similarity) were retrieved from water and biofilms of supply A and 251 (43 OTUs) from supply B. The estimation of the average value of total species richness (Chao1) in supply A (153) was clearly higher than that for supply B (58). In each supply, about 77% of the sequences showed <97% similarity to described species. Sequences related to L. pneumophila were only incidentally observed. The Legionella populations of the two supplies are divided into two distinct clusters based on distances in the phylogenetic tree as fractions of the branch length. Thus, a large variety of mostly yet-undescribed Legionella spp. proliferates in unchlorinated water supplies at temperatures below 18°C. The lowest concentration and greatest diversity were observed in the supply with the low NOM concentration.


Asunto(s)
Agua Dulce/química , Agua Dulce/microbiología , Legionella/clasificación , Legionella/aislamiento & purificación , Compuestos Orgánicos/análisis , Abastecimiento de Agua , Carga Bacteriana , Técnicas Bacteriológicas , ADN Bacteriano/química , ADN Bacteriano/genética , Legionella/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Temperatura
12.
Appl Environ Microbiol ; 76(21): 7144-53, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20851993

RESUMEN

Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml) collected from 21 engineered freshwater systems, with added polyethylene cylinders to promote biofilm formation, were inoculated with L. pneumophila and subsequently incubated at 37°C for 20 days. Growth of L. pneumophila was observed in 16 of 18 water types when the host protozoan Hartmannella vermiformis was added. Twelve of the tested water types supported growth of L. pneumophila or indigenous Legionella anisa without added H. vermiformis. In 12 of 19 BBT flasks H. vermiformis was indicated as a host, based on the ratio between maximum concentrations of L. pneumophila and H. vermiformis, determined with quantitative PCR (Q-PCR), and the composition of clone libraries of partial 18S rRNA gene fragments. Analyses of 609 eukaryotic clones from the BBTs revealed that 68 operational taxonomic units (OTUs) showed the highest similarity to free-living protozoa. Forty percent of the sequences clustering with protozoa showed ≥99.5% similarity to H. vermiformis. None of the other protozoa serving as hosts in in vitro studies were detected in the BBTs. In several tests with growth of L. pneumophila, the protozoa Diphylleia rotans, Echinamoeba thermarum, and Neoparamoeba sp. were identified as candidate hosts. In vitro studies are needed to confirm their role as hosts for L. pneumophila. Unidentified protozoa were implicated as hosts for uncultured Legionella spp. grown in BBT flasks at 15°C.


Asunto(s)
Biopelículas , Hartmannella/microbiología , Legionella pneumophila/fisiología , Microbiología del Agua , Acanthamoeba/genética , Acanthamoeba/microbiología , Técnicas Bacteriológicas/métodos , Secuencia de Bases , ADN Bacteriano/genética , Hartmannella/genética , Legionella pneumophila/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Abastecimiento de Agua
13.
Appl Environ Microbiol ; 75(14): 4736-46, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19465529

RESUMEN

Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20 degrees C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa.


Asunto(s)
Eucariontes/clasificación , Eucariontes/aislamiento & purificación , Agua Dulce/parasitología , Abastecimiento de Agua , Animales , Análisis por Conglomerados , Dermatoglifia del ADN , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Eucariontes/genética , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
14.
Appl Environ Microbiol ; 72(9): 5750-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16957190

RESUMEN

A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 x 10(-1) and 1.14 x 10(4) cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 +/- 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (> or =98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water.


Asunto(s)
Hartmannella/genética , Hartmannella/aislamiento & purificación , Animales , Secuencia de Bases , Cartilla de ADN/genética , Dosificación de Gen , Genes Protozoarios , Hartmannella/microbiología , Legionella pneumophila/aislamiento & purificación , Datos de Secuencia Molecular , Países Bajos , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/estadística & datos numéricos , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Agua/parasitología
15.
Appl Environ Microbiol ; 72(1): 157-66, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16391038

RESUMEN

Representatives of the genus Legionella were detected by use of a real-time PCR method in all water samples collected directly after treatment from 16 surface water (SW) supplies prior to postdisinfection and from 81 groundwater (GW) supplies. Legionella concentrations ranged from 1.1 x 10(3) to 7.8 x 10(5) cells liter(-1) and were significantly higher in SW treated with multiple barriers at 4 degrees C than in GW treated at 9 to 12 degrees C with aeration and filtration but without chemical disinfection. No Legionellae (<50 CFU liter(-1)) were detected in treated water by the culture method. Legionella was also observed in untreated SW and in untreated aerobic and anaerobic GW. Filtration processes in SW and GW treatment had little effect or increased the Legionella concentration, but ozonation in SW treatment caused about 1-log-unit reduction. A phylogenetic analysis of 16S rRNA gene sequences of 202 clones, obtained from a selection of samples, showed a high similarity (>91%) with Legionella sequences in the GenBank database. A total of 40 (33%) of the 16S rRNA gene sequences obtained from treated water were identified as described Legionella species and types, including L. bozemanii, L. worsleiensis, Legionella-like amoebal pathogen types, L. quateirensis, L. waltersii, and L. pneumophila. 16S rRNA gene sequences with a similarity of below 97% from described species were positioned all over the phylogenetic tree of Legionella. Hence, a large diversity of yet-uncultured Legionellae are common members of the microbial communities in SW and GW treated at water temperatures of below 15 degrees C.


Asunto(s)
Agua Dulce/microbiología , Variación Genética , Legionella/crecimiento & desarrollo , Legionella/aislamiento & purificación , Abastecimiento de Agua , Medios de Cultivo , Legionella/clasificación , Legionella/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura , Purificación del Agua/métodos
16.
Appl Environ Microbiol ; 70(11): 6826-33, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15528550

RESUMEN

The need for protozoa for the proliferation of Legionella pneumophila in aquatic habitats is still not fully understood and is even questioned by some investigators. This study shows the in vivo growth of L. pneumophila in protozoa in aquatic biofilms developing at high concentrations on plasticized polyvinyl chloride in a batch system with autoclaved tap water. The inoculum, a mixed microbial community including indigenous L. pneumophila originating from a tap water system, was added in an unfiltered as well as filtered (cellulose nitrate, 3.0-microm pore size) state. Both the attached and suspended biomasses were examined for their total amounts of ATP, for culturable L. pneumophila, and for their concentrations of protozoa. L. pneumophila grew to high numbers (6.3 log CFU/cm2) only in flasks with an unfiltered inoculum. Filtration obviously removed the growth-supporting factor, but it did not affect biofilm formation, as determined by measuring ATP. Cultivation, direct counting, and 18S ribosomal DNA-targeted PCR with subsequent sequencing revealed the presence of Hartmannella vermiformis in all flasks in which L. pneumophila multiplied and also when cycloheximide had been added. Fluorescent in situ hybridization clearly demonstrated the intracellular growth of L. pneumophila in trophozoites of H. vermiformis, with 25.9% +/- 10.5% of the trophozoites containing L. pneumophila on day 10 and >90% containing L. pneumophila on day 14. Calculations confirmed that intracellular growth was most likely the only way for L. pneumophila to proliferate within the biofilm. Higher biofilm concentrations, measured as amounts of ATP, gave higher L. pneumophila concentrations, and therefore the growth of L. pneumophila within engineered water systems can be limited by controlling biofilm formation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Hartmannella/crecimiento & desarrollo , Hartmannella/microbiología , Legionella pneumophila/crecimiento & desarrollo , Cloruro de Polivinilo , Animales , Recuento de Colonia Microbiana , ADN Ribosómico/análisis , Agua Dulce/microbiología , Agua Dulce/parasitología , Datos de Secuencia Molecular , Filogenia , Cloruro de Polivinilo/metabolismo , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...