Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8006): 78-83, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538799

RESUMEN

Exotic physics could emerge from interplay between geometry and correlation. In fractional quantum Hall (FQH) states1, novel collective excitations called chiral graviton modes (CGMs) are proposed as quanta of fluctuations of an internal quantum metric under a quantum geometry description2-5. Such modes are condensed-matter analogues of gravitons that are hypothetical spin-2 bosons. They are characterized by polarized states with chirality6-8 of +2 or -2, and energy gaps coinciding with the fundamental neutral collective excitations (namely, magnetorotons9,10) in the long-wavelength limit. However, CGMs remain experimentally inaccessible. Here we observe chiral spin-2 long-wavelength magnetorotons using inelastic scattering of circularly polarized lights, providing strong evidence for CGMs in FQH liquids. At filling factor v = 1/3, a gapped mode identified as the long-wavelength magnetoroton emerges under a specific polarization scheme corresponding to angular momentum S = -2, which persists at extremely long wavelength. Remarkably, the mode chirality remains -2 at v = 2/5 but becomes the opposite at v = 2/3 and 3/5. The modes have characteristic energies and sharp peaks with marked temperature and filling-factor dependence, corroborating the assignment of long-wavelength magnetorotons. The observations capture the essentials of CGMs and support the FQH geometrical description, paving the way to unveil rich physics of quantum metric effects in topological correlated systems.

2.
Nat Nanotechnol ; 19(2): 141-142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38110530
3.
Nano Lett ; 23(24): 11655-11661, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38054904

RESUMEN

We report on the optical absorption characteristics of selectively positioned sulfur vacancies in monolayer MoS2, as observed by photovoltage and photocurrent experiments in an atomistic vertical tunneling circuit at cryogenic and room temperature. Charge carriers are resonantly photoexcited within the defect states before they tunnel through an hBN tunneling barrier to a graphene-based drain contact. Both photovoltage and photocurrent characteristics confirm the optical absorption spectrum as derived from ab initio GW and Bethe-Salpeter equation approximations. Our results reveal the potential of single-vacancy tunneling devices as atomic-scale photodiodes.

4.
Opt Lett ; 48(21): 5783-5786, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910758

RESUMEN

Experiments in photonics, laser optics, and quantum technology require low-loss, thermal, and mechanical stability. While photonic integrated circuits on monolithic chips achieve interferometric stability, important nanophotonic material systems suffer from propagation loss, thermal drift, and noise that prevent, for example, precise frequency stabilization of resonators. Here we show that tantalum pentoxide (Ta2O5) on insulator micro-ring resonators combine quality factors beyond 1.8 Mio with vanishing temperature-dependent wavelength shift in a relevant 70 K to 90 K temperature range. Our Ta2O5-on-SiO2 devices will thus enable athermal operation at liquid nitrogen temperatures, paving the way for ultra-stable low-cost resonators, as desired for wavelength division multiplexing, on chip frequency stabilization and low-noise optical frequency comb generation.

5.
Phys Rev Lett ; 131(3): 036902, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37540866

RESUMEN

We report on the spatial coherence of interlayer exciton ensembles as formed in MoSe_{2}/WSe_{2} heterostructures and characterized by point-inversion Michelson-Morley interferometry. Below 10 K, the measured spatial coherence length of the interlayer excitons reaches values equivalent to the lateral expansion of the exciton ensembles. In this regime, the light emission of the excitons turns out to be homogeneously broadened in energy with a high temporal coherence. At higher temperatures, both the spatial coherence length and the temporal coherence time decrease, most likely because of thermal processes. The presented findings point towards a spatially extended, coherent many-body state of interlayer excitons at low temperature.

6.
ACS Nano ; 17(6): 5316-5328, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926838

RESUMEN

Correlated quantum phenomena in one-dimensional (1D) systems that exhibit competing electronic and magnetic order are of strong interest for the study of fundamental interactions and excitations, such as Tomonaga-Luttinger liquids and topological orders and defects with properties completely different from the quasiparticles expected in their higher-dimensional counterparts. However, clean 1D electronic systems are difficult to realize experimentally, particularly for magnetically ordered systems. Here, we show that the van der Waals layered magnetic semiconductor CrSBr behaves like a quasi-1D material embedded in a magnetically ordered environment. The strong 1D electronic character originates from the Cr-S chains and the combination of weak interlayer hybridization and anisotropy in effective mass and dielectric screening, with an effective electron mass ratio of mXe/mYe ∼ 50. This extreme anisotropy experimentally manifests in strong electron-phonon and exciton-phonon interactions, a Peierls-like structural instability, and a Fano resonance from a van Hove singularity of similar strength to that of metallic carbon nanotubes. Moreover, because of the reduced dimensionality and interlayer coupling, CrSBr hosts spectrally narrow (1 meV) excitons of high binding energy and oscillator strength that inherit the 1D character. Overall, CrSBr is best understood as a stack of weakly hybridized monolayers and appears to be an experimentally attractive candidate for the study of exotic exciton and 1D-correlated many-body physics in the presence of magnetic order.

7.
ACS Nanosci Au ; 2(6): 450-485, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36573124

RESUMEN

Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including in situ and ex situ methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.

8.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36145043

RESUMEN

The disentanglement of single and many particle properties in 2D semiconductors and their dependencies on high carrier concentration is challenging to experimentally study by pure optical means. We establish an electrolyte gated WS2 monolayer field-effect structure capable of shifting the Fermi level from the valence into the conduction band that is suitable to optically trace exciton binding as well as the single-particle band gap energies in the weakly doped regime. Combined spectroscopic imaging ellipsometry and photoluminescence spectroscopies spanning large n- and p-type doping with charge carrier densities up to 1014 cm-2 enable to study screening phenomena and doping dependent evolution of the rich exciton manifold whose origin is controversially discussed in literature. We show that the two most prominent emission bands in photoluminescence experiments are due to the recombination of spin-forbidden and momentum-forbidden charge neutral excitons activated by phonons. The observed interband transitions are redshifted and drastically weakened under electron or hole doping. This field-effect platform is not only suitable for studying exciton manifold but is also suitable for combined optical and transport measurements on degenerately doped atomically thin quantum materials at cryogenic temperatures.

9.
Phys Rev Lett ; 128(1): 017401, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061454

RESUMEN

Impacts of domain textures on low-lying neutral excitations in the bulk of fractional quantum Hall effect (FQHE) systems are probed by resonant inelastic light scattering. We demonstrate that large domains of quantum fluids support long-wavelength neutral collective excitations with well-defined wave vector (momentum) dispersion that could be interpreted by theories for uniform phases. Access to dispersive low-lying neutral collective modes in large domains of FQHE fluids such as long wavelength magnetorotons at filling factor v=1/3 offer significant experimental access to strong electron correlation physics in the FQHE.

10.
Adv Mater ; 33(44): e2104265, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34480500

RESUMEN

Chemically stable quantum-confined 2D metals are of interest in next-generation nanoscale quantum devices. Bottom-up design and synthesis of such metals could enable the creation of materials with tailored, on-demand, electronic and optical properties for applications that utilize tunable plasmonic coupling, optical nonlinearity, epsilon-near-zero behavior, or wavelength-specific light trapping. In this work, it is demonstrated that the electronic, superconducting, and optical properties of air-stable 2D metals can be controllably tuned by the formation of alloys. Environmentally robust large-area 2D-Inx Ga1- x alloys are synthesized byConfinement Heteroepitaxy (CHet). Near-complete solid solubility is achieved with no evidence of phase segregation, and the composition is tunable over the full range of x by changing the relative elemental composition of the precursor. The optical and electronic properties directly correlate with alloy composition, wherein the dielectric function, band structure, superconductivity, and charge transfer from the metal to graphene are all controlled by the indium/gallium ratio in the 2D metal layer.

11.
Nano Lett ; 21(2): 1040-1046, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33433221

RESUMEN

We demonstrate electrostatic switching of individual, site-selectively generated matrices of single photon emitters (SPEs) in MoS2 van der Waals heterodevices. We contact monolayers of MoS2 in field-effect devices with graphene gates and hexagonal boron nitride as the dielectric and graphite as bottom gates. After the assembly of such gate-tunable heterodevices, we demonstrate how arrays of defects, that serve as quantum emitters, can be site-selectively generated in the monolayer MoS2 by focused helium ion irradiation. The SPEs are sensitive to the charge carrier concentration in the MoS2 and switch on and off similar to the neutral exciton in MoS2 for moderate electron doping. The demonstrated scheme is a first step for producing scalable, gate-addressable, and gate-switchable arrays of quantum light emitters in MoS2 heterostacks.

12.
ACS Nano ; 14(12): 16663-16671, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33196167

RESUMEN

Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS2) interface. A 10× larger photocurrent is extracted at the EG/MoS2 interface when compared to the metal (Ti/Au)/MoS2 interface. This is supported by semi-local density functional theory (DFT), which predicts the Schottky barrier at the EG/MoS2 interface to be ∼2× lower than that at Ti/MoS2. We provide a direct visualization of a 2D material Schottky barrier through combination of angle-resolved photoemission spectroscopy with spatial resolution selected to be ∼300 nm (nano-ARPES) and DFT calculations. A bending of ∼500 meV over a length scale of ∼2-3 µm in the valence band maximum of MoS2 is observed via nano-ARPES. We explicate a correlation between experimental demonstration and theoretical predictions of barriers at graphene/TMD interfaces. Spatially resolved photocurrent mapping allows for directly visualizing the uniformity of built-in electric fields at heterostructure interfaces, providing a guide for microscopic engineering of charge transport across heterointerfaces. This simple probe-based technique also speaks directly to the 2D synthesis community to elucidate electronic uniformity at domain boundaries alongside morphological uniformity over large areas.

13.
Nano Lett ; 20(11): 8312-8318, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33079555

RESUMEN

Near-infrared-to-visible second harmonic generation from air-stable two-dimensional polar gallium and indium metals is described. The photonic properties of 2D metals, including the largest second-order susceptibilities reported for metals (approaching 10 nm/V), are determined by the atomic-level structure and bonding of two-to-three-atom-thick crystalline films. The bond character evolved from covalent to metallic over a few atomic layers, changing the out-of-plane metal-metal bond distances by approximately ten percent (0.2 Å), resulting in symmetry breaking and an axial electrostatic dipole that mediated the large nonlinear response. Two different orientations of the crystalline metal atoms, corresponding to lateral displacements <2 Å, persisted in separate micrometer-scale terraces to generate distinct harmonic polarizations. This strong atomic-level structure-property interplay suggests metal photonic properties can be controlled with atomic precision.

14.
Nano Lett ; 20(6): 4437-4444, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32368920

RESUMEN

Structuring materials with atomic precision is the ultimate goal of nanotechnology and is becoming increasingly relevant as an enabling technology for quantum electronics/spintronics and quantum photonics. Here, we create atomic defects in monolayer MoS2 by helium ion (He-ion) beam lithography with a spatial fidelity approaching the single-atom limit in all three dimensions. Using low-temperature scanning tunneling microscopy (STM), we confirm the formation of individual point defects in MoS2 upon He-ion bombardment and show that defects are generated within 9 nm of the incident helium ions. Atom-specific sputtering yields are determined by analyzing the type and occurrence of defects observed in high-resolution STM images and compared with Monte Carlo simulations. Both theory and experiment indicate that the He-ion bombardment predominantly generates sulfur vacancies.

15.
J Phys Condens Matter ; 32(33): 333002, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32244237

RESUMEN

Even if individual two-dimensional materials own various interesting and unexpected properties, the stacking of such layers leads to van der Waals solids which unite the characteristics of two dimensions with novel features originating from the interlayer interactions. In this topical review, we cover fabrication and characterization of van der Waals hetero-structures with a focus on hetero-bilayers made of monolayers of semiconducting transition metal dichalcogenides. Experimental and theoretical techniques to investigate those hetero-bilayers are introduced. Most recent findings focusing on different transition metal dichalcogenides hetero-structures are presented and possible optical transitions between different valleys, appearance of moiré patterns and signatures of moiré excitons are discussed. The fascinating and fast growing research on van der Waals hetero-bilayers provide promising insights required for their application as emerging quantum-nano materials.

16.
Sci Adv ; 5(3): eaav3407, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30915397

RESUMEN

Collective modes of exotic quantum fluids reveal underlying physical mechanisms responsible for emergent quantum states. We observe unexpected new collective modes in the fractional quantum Hall (FQH) regime: intra-Landau-level plasmons measured by resonant inelastic light scattering. The plasmons herald rotational-symmetry-breaking (nematic) phases in the second Landau level and uncover the nature of long-range translational invariance in these phases. The intricate dependence of plasmon features on filling factor provides insights on interplays between topological quantum Hall order and nematic electronic liquid crystal phases. A marked intensity minimum in the plasmon spectrum at Landau level filling factor v = 5/2 strongly suggests that this paired state, which may support non-Abelian excitations, overwhelms competing nematic phases, unveiling the robustness of the 5/2 superfluid state for small tilt angles. At v = 7/3, a sharp and strong plasmon peak that links to emerging macroscopic coherence supports the proposed model of a FQH nematic state.

17.
Nat Commun ; 10(1): 807, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778074

RESUMEN

Charge carriers in semiconducting transition metal dichalcogenides possess a valley degree of freedom that allows for optoelectronic applications based on the momentum of excitons. At elevated temperatures, scattering by phonons limits valley polarization, making a detailed knowledge about strength and nature of the interaction of excitons with phonons essential. In this work, we directly access exciton-phonon coupling in charge tunable single layer MoS2 devices by polarization resolved Raman spectroscopy. We observe a strong defect mediated coupling between the long-range oscillating electric field induced by the longitudinal optical phonon in the dipolar medium and the exciton. This so-called Fröhlich exciton phonon interaction is suppressed by doping. The suppression correlates with a distinct increase of the degree of valley polarization up to 20% even at elevated temperatures of 220 K. Our result demonstrates a promising strategy to increase the degree of valley polarization towards room temperature valleytronic applications.

18.
Sci Rep ; 7(1): 12383, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959034

RESUMEN

We demonstrate the reduction of the inhomogeneous linewidth of the free excitons in atomically thin transition metal dichalcogenides (TMDCs) MoSe2, WSe2 and MoS2 by encapsulation within few nanometre thick hBN. Encapsulation is shown to result in a significant reduction of the 10 K excitonic linewidths down to ∼3.5 meV for n-MoSe2, ∼5.0 meV for p-WSe2 and ∼4.8 meV for n-MoS2. Evidence is obtained that the hBN environment effectively lowers the Fermi level since the relative spectral weight shifts towards the neutral exciton emission in n-doped TMDCs and towards charged exciton emission in p-doped TMDCs. Moreover, we find that fully encapsulated MoS2 shows resolvable exciton and trion emission even after high power density excitation in contrast to non-encapsulated materials. Our findings suggest that encapsulation of mechanically exfoliated few-monolayer TMDCs within nanometre thick hBN dramatically enhances optical quality, producing ultra-narrow linewidths that approach the homogeneous limit.

19.
Nano Lett ; 17(9): 5229-5237, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28742367

RESUMEN

We report the observation of a doublet structure in the low-temperature photoluminescence of interlayer excitons in heterostructures consisting of monolayer MoSe2 and WSe2. Both peaks exhibit long photoluminescence lifetimes of several tens of nanoseconds up to 100 ns verifying the interlayer nature of the excitons. The energy and line width of both peaks show unusual temperature and power dependences. While the low-energy peak dominates the spectra at low power and low temperatures, the high-energy peak dominates for high power and temperature. We explain the findings by two kinds of interlayer excitons being either indirect or quasi-direct in reciprocal space. Our results provide fundamental insights into long-lived interlayer states in van der Waals heterostructures with possible bosonic many-body interactions.

20.
ACS Nano ; 9(11): 11302-9, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26536283

RESUMEN

MoS2 crystals exhibit excellent catalytic properties and great potential for photocatalytic production of solar fuels such as hydrogen gas. In this regard, the photocatalytic stability of exfoliated single- and few-layer MoS2 immersed in water is investigated by µ-Raman spectroscopy. We find that while the basal plane of MoS2 can be treated as stable under photocatalytic conditions, the edge sites and presumably also defect sites are highly affected by a photoinduced corrosion process. The edge sites of MoS2 monolayers are significantly more resistant to photocatalytic degradation compared to MoS2 multilayer edge sites. The photostability of MoS2 edge sites depends on the photon energy with respect to the band gap in MoS2 and also on the presence of oxygen in the electrolyte. These findings are interpreted in the framework of an oxidation process converting MoS2 into MoOx in the presence of oxygen and photoinduced charge carriers. The high stability of the MoS2 basal plane under photocatalytic treatment under visible light irradiation of extreme light intensities on the order of P ≈ 10 mW/µm(2) substantiates MoS2's potential as photocatalyst for solar hydrogen production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...