Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(36): 40949-40957, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794739

RESUMEN

The surface, interface, and bulk properties are a few of the most critical factors that influence the performance of perovskite solar cells. The photoelectron spectroscopy (PES) is used as a technique to analyze these properties. However, the information depth of PES is limited to 10-20 nm, which makes it not suitable to study the complete devices, which have a thickness of ∼1 µm. Here, we introduce a novel and simple technique of PES on a tapered cross section (TCS-PES). It provides both lateral and vertical resolutions compared to the conventional PES so that it is suitable to study a complete perovskite solar cell. It offers many benefits over conventional PES methods such as the chemical composition in the micrometer scale from the surface to the bulk and the electronic properties at the multiple interfaces. The chemical natures of different layers of the perovskite-based solar cells [(FAPbI3)0.85(MAPbBr3)0.15] can be identified precisely for the first time using the TCS-PES method. We found that the perovskite layer has higher iodine concentration at the Spiro/perovskite interface and higher bromine concentration at the TiO2/perovskite interface. UPS measurements on the tapered cross section revealed that the perovskite is n-type, and the solar cell studied here is a p-n-n structure type device. The unique possibilities to analyze the complete solar cell by XPS and UPS allow us to estimate the band bending in a working solar cell. Moreover, this technique can further be used to study the device under operating conditions, and it can be applied in other solid-state devices like solid electrolyte Li-ion batteries, LEDs, or photoelectrodes.

2.
ACS Appl Mater Interfaces ; 10(14): 11414-11419, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29557162

RESUMEN

We tune the Fermi level alignment between the SnO x electron transport layer (ETL) and Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 and highlight that this parameter is interlinked with current-voltage hysteresis in perovskite solar cells (PSCs). Furthermore, thermally stimulated current measurements reveal that the depth of trap states in the ETL or at the ETL-perovskite interface correlates with Fermi level positions, ultimately linking it to the energy difference between the Fermi level and conduction band minimum. In the presence of deep trap states, charge accumulation and recombination at the interface are promoted, affecting the charge collection efficiency adversely, which increases the hysteresis of PSCs.

3.
ACS Nano ; 10(6): 5999-6007, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27228558

RESUMEN

Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

4.
J Phys Chem Lett ; 5(4): 680-5, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-26270836

RESUMEN

The effect of electron- and hole-selective contacts in the final cell performance of hybrid lead halide perovskite, CH3NH3PbI3, solar cells has been systematically analyzed by impedance spectroscopy. Complete cells with compact TiO2 and spiro-OMeTAD as electron- and hole-selective contacts have been compared with incomplete cells without one or both selective contacts to highlight the specific role of each contact. It has been described how selective contacts contribute to enhance the cell FF and how the hole-selective contact is mainly responsible for the high Voc in this kind of device. We have determined that the recombination rate is mainly governed by the selective contacts. This fact has important implication for the future optimization of perovskite solar cells. Finally, we have developed a method to analyze the results obtained, and it has been applied for three different electron-selecting materials: TiO2, ZnO, and CdS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...