Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37317219

RESUMEN

Fremyella diplosiphon is an ideal third-generation biofuel source due to its ability to produce transesterified lipids. While nanofer 25s zero-valent iron nanoparticles (nZVIs) improve lipid production, an imbalance between reactive oxygen species (ROS) and cellular defense can be catastrophic to the organism. In the present study, the effect of ascorbic acid on nZVI and UV-induced stress in F. diplosiphon strain B481-SD was investigated, and lipid profiles in the combination regimen of nZVIs and ascorbic acid compared. Comparison of F. diplosiphon growth in BG11 media amended with 2, 4, 6, 8, and 10 mM ascorbic acid indicated 6 mM to be optimal for the growth of B481-SD. Further, growth in 6 mM ascorbic acid combined with 3.2 mg/L nZVIs was significantly higher when compared to the combination regimen of 12.8 and 51.2 mg/L of nZVIs and 6 mM ascorbic acid. The reversal effect of UV-B radiation for 30 min and 1 h indicated that ascorbic acid restored B481-SD growth. Transesterified lipids characterized by gas chromatography-mass spectrometry indicated C16 hexadecanoate to be the most abundant fatty acid methyl ester in the combination regimen of 6 mM ascorbic acid and 12.8 mg/L nZVI-treated F. diplosiphon. These findings were supported by microscopic observations in which cellular degradation was observed in B481-SD cells treated with 6 mM ascorbic acid and 12.8 mg/L nZVIs. Our results indicate that ascorbic acid counteracts the damaging effect of oxidative stress produced by nZVIs.

2.
ACS Omega ; 7(39): 35092-35101, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36211070

RESUMEN

In spite of the enormous potential of cyanobacteria as a renewable energy source, elevated UV exposure is a major impediment to their commercial viability and productivity. Fremyella diplosiphon is a widely explored cyanobacterium with great biofuel capacity due to its high lipid content. To enhance UV stress tolerance in this species, we overexpressed the photoreactivation gene (phr A) that encodes for photolyase DNA repair enzyme in the wild type F. diplosiphon (B481-WT) by genetic transformation. Our efforts resulted in a transformant (B481-ViAnSa) with a 3808-fold increase in the phr A mRNA transcript level and enhanced growth under UV-B stress. Additionally, DNA strand breaks in the transformant were significantly lower after 12 and 16 h of UV radiation, with significantly higher dsDNA recovery in B481-ViAnSa (98.1%) compared to that in B481-WT (81.5%) at 48 h post irradiation. Photosystem II recovery time in the transformant was significantly reduced (48 h) compared to that in the wild type (72 h). Evaluation of high-value fatty acid methyl esters (FAMEs) revealed methyl palmitate, the methyl ester of hexadecenoic acid (C16:0), to be the most dominant component, accounting for 53.43% of the identified FAMEs in the transformant. Results of the study offer a promising approach to enhance UV tolerance in cyanobacteria, thus paving the way to large-scale open or closed pond cultivation for commercial biofuel production.

3.
ACS Omega ; 6(48): 32730-32738, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34901621

RESUMEN

Nanoscale zero-valent iron nanoparticles (nZVIs) are known to boost biomass production and lipid yield in Fremyella diplosiphon, a model biodiesel-producing cyanobacterium. However, the impact of nZVI-induced reactive oxygen species (ROS) in F. diplosiphon has not been evaluated. In the present study, ROS in F. diplosiphon strains (B481-WT and B481-SD) generated in response to nZVI-induced oxidative stress were quantified and the enzymatic response determined. Lipid peroxidation as a measure of oxidative stress revealed significantly higher malondialdehyde content (p < 0.01) in both strains treated with 3.2, 12.8, and 51.2 mg L-1 nZVIs compared to untreated control. In addition, ROS in all nZVI-treated cultures treated with 1.6-25.6 mg L-1 nZVIs was significantly higher than the untreated control as determined by the 2',7'-dichlorodihydrofluorescein diacetate fluorometric probe. Immunodetection using densitometric analysis of iron superoxide dismutase (SOD) revealed significantly higher SOD levels in both strains treated with nZVIs at 51.2 mg L-1. In addition, we observed significantly higher (p < 0.001) SOD levels in the B481-SD strain treated with 6.4 mg L-1 nZVIs compared to 3.2 mg L-1 nZVIs. Validation using transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy (EDS) revealed adsorption of nZVIs with a strong iron peak in both B481-WT and B481-SD strains. While the EDS spectra showed strong signals for iron at 4 and 12 days after treatment, a significant decrease in peak intensity was observed at 20 days. Future efforts will be aimed at studying transduction mechanisms that cause metabolic and epigenetic alterations in response to nZVIs in F. diplosiphon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA