Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38894360

RESUMEN

Maintaining high-quality welded connections is crucial in many industries. One of the challenges is assessing the mechanical properties of a joint during its production phase. Currently, in industrial practice, this occurs through NDT (non-destructive testing) conducted after the production process. This article proposes the use of a virtual sensor, which, based on temperature distributions observed on the joint surface during the welding process, allows for the determination of hardness distribution across the cross-section of a joint. Welding trials were conducted with temperature recording, hardness measurements were taken, and then, neural networks with different hyperparameters were tested and evaluated. As a basis for developing a virtual sensor, LSTM networks were utilized, which can be applied to time series prediction, as in the analyzed case of hardness value sequences across the cross-section of a welded joint. Through the analysis of the obtained results, it was determined that the developed virtual sensor can be applied to predict global temperature changes in the weld area, in terms of both its value and geometry changes, with the mean average error being less than 20 HV (mean for model ~35 HV). However, in its current form, predicting local hardness disturbances resulting from process instabilities and defects is not feasible.

2.
Materials (Basel) ; 15(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269148

RESUMEN

A high-power direct diode laser (HPDDL) having a rectangular beam with a top-hat intensity distribution was used to produce surface-hardened layers on a ferrous alloy. The thermal conditions in the hardened zone were estimated by using numerical simulations and infrared (IR) thermography and then referred to the thickness and microstructure of the hardened layers. The microstructural characteristics of the hardened layers were investigated using optical, scanning electron and transmission electron microscopy together with X-ray diffraction. It was found that the major factor that controls the thickness of the hardened layer is laser power density, which determines the optimal range of the traverse speed, and in consequence the temperature distribution in the hardened zone. The increase in the cooling rate led to the suppression of the martensitic transformation and a decrease in the hardened layer hardness. The precipitation of the nanometric plate-like and spherical cementite was observed throughout the hardened layer.

3.
Materials (Basel) ; 15(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35161058

RESUMEN

Assessing the temperature of the joint in on-line mode is a vital task that is demanded to characterize the formations of terns formations that are taking place in a joint and result in reaching necessary properties of the joint. Arc welding generates a high amount of heat that is reflected by the metallic surface of the welded object. In the paper, a temperature measurement credibility increase method is described and evaluated. The proposed method is used to reduce the influence of the reflected temperature of the hot torch and the arc on the temperature distribution observed on the surface of the welded joint using an infrared camera. The elaborated approach is based on comparison between infrared observation of the solidifying weld and precisely performed finite element method (FEM) simulation. The FEM simulations were calibrated according to the geometry of the fusion zone. It allows to precisely model heat source properties. The best-reflected temperature correction map was selected and applied to obtain a temperature representation that differs from the FEM baseline by less than 10 °C. Precise temperature values allowed us to cluster welded joints in 3D feature space (temperature, hardness, linear energy). It was found that by using the k-means clustering method it is possible to distinguish between correct and faulty (in terms of too low mechanical properties) joints.

4.
Materials (Basel) ; 13(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455669

RESUMEN

In this article, the results of surfacing technology development, and structural, and mechanical properties examinations of 16Mo3 steel pipes with an outside coating of Inconel 625 deposited by automated plasma powder transferred arc (PPTA) and automated high power direct diode laser (HPDDL) surfacing were presented. Based on the results of non-destructive, metallographical macro- and microscopic, chemical composition, and thickness and hardness examinations optimal technology for use in high temperature energy or chemical industry applications was selected. The examinations conducted for each of the aforementioned technologies revealed the proper structure and high quality of coating. Dendritic structure with primary crystals growing in the direction of heat dissipation was revealed. No defects such as cracks, lack of fusion or porosity were found. Iron content in the most outer area of the layer made by PPTA with a heat input of 277-514 J/mm, thickness from 1.2 to 1.7 mm, between 4% and 5.5% was observed. Iron content in the most outer area of the layer made by HPDDL surfacing with output power of 1000-1600 W and scanning speed 3.3-4.7mm/s, from 0.6 to 1.3 mm in thickness, between 5.1% and 7.5% was observed. In coated pipes made by either technology high quality of surfaced layers, conforming to requirements posed on protective layers manufactured for prolonged exploitation in temperatures up to 625 °C, were observed. High temperature resistance examinations are the focus of further, yet unpublished, research. The obtained results point to slight differences in the parameters and properties of nickel-based superalloy layers surfaced on 16Mo3 pipes based on the technologies used. However, the process parameters optimization in the case of PPTA was simpler compared to HPDDL surfacing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA