Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(9): e9293, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177109

RESUMEN

In Europe, 50%-70% of former natural grassland area has been destroyed during the past 30 years due to land use changes, losses are expected to increase in the future. Restoration is thought to reverse this situation by creating suitable abiotic conditions. In this paper, we investigate the effects of sod translocation with specific vegetation to facilitate the restoration of a former intensive agricultural field into a wet meadow. First, starting conditions were optimized including modification of the local hydrology, removal of the fertilized topsoil, application of liming, and translocation of fresh clippings as a seed source. The second part aimed at restoring the habitat for the butterfly species Phengaris (Maculinea) teleius, one of the species that was especially affected by the loss of wet meadows. This species engages in a complex myrmecophilous relationship with one host plant, Sanguisorba officinalis, and one obligate host ant, Myrmica scabrinodis. We used sod translocation to create islands of habitat to promote host plant and host ant colonization. After 4 years following the restoration, we observed that plants spread from the transplanted sods to the surroundings. The vegetation composition and structure of the transplanted sods attracted colonization of Myrmica ants into the restored areas. Following the increase in vegetation cover and height, Myrmica ant colonies further spread into the restored areas. Therefore, sod translocations can be considered an effective restoration method following topsoil removal in the process of restoring wet meadows to provide a starting point for ant colonization and plant dispersion. With these findings, this paper contributes to the evidence-based restoration of wet meadows on former agricultural fields, including complex interactions between invertebrates and their required ecological relationships.

2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33431566

RESUMEN

We review changes in the status of butterflies in Europe, focusing on long-running population data available for the United Kingdom, the Netherlands, and Belgium, based on standardized monitoring transects. In the United Kingdom, 8% of resident species have become extinct, and since 1976 overall numbers declined by around 50%. In the Netherlands, 20% of species have become extinct, and since 1990 overall numbers in the country declined by 50%. Distribution trends showed that butterfly distributions began decreasing long ago, and between 1890 and 1940, distributions declined by 80%. In Flanders (Belgium), 20 butterflies have become extinct (29%), and between 1992 and 2007 overall numbers declined by around 30%. A European Grassland Butterfly Indicator from 16 European countries shows there has been a 39% decline of grassland butterflies since 1990. The 2010 Red List of European butterflies listed 38 of the 482 European species (8%) as threatened and 44 species (10%) as near threatened (note that 47 species were not assessed). A country level analysis indicates that the average Red List rating is highest in central and mid-Western Europe and lowest in the far north of Europe and around the Mediterranean. The causes of the decline of butterflies are thought to be similar in most countries, mainly habitat loss and degradation and chemical pollution. Climate change is allowing many species to spread northward while bringing new threats to susceptible species. We describe examples of possible conservation solutions and a summary of policy changes needed to conserve butterflies and other insects.


Asunto(s)
Mariposas Diurnas , Conservación de los Recursos Naturales , Extinción Biológica , Animales , Biodiversidad , Europa (Continente)
3.
Philos Trans R Soc Lond B Biol Sci ; 374(1769): 20180202, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30967080

RESUMEN

The range of hosts exploited by a parasite is determined by several factors, including host availability, infectivity and exploitability. Each of these can be the target of natural selection on both host and parasite, which will determine the local outcome of interactions, and potentially lead to coevolution. However, geographical variation in host use and specificity has rarely been investigated. Maculinea (= Phengaris) butterflies are brood parasites of Myrmica ants that are patchily distributed across the Palæarctic and have been studied extensively in Europe. Here, we review the published records of ant host use by the European Maculinea species, as well as providing new host ant records for more than 100 sites across Europe. This comprehensive survey demonstrates that while all but one of the Myrmica species found on Maculinea sites have been recorded as hosts, the most common is often disproportionately highly exploited. Host sharing and host switching are both relatively common, but there is evidence of specialization at many sites, which varies among Maculinea species. We show that most Maculinea display the features expected for coevolution to occur in a geographic mosaic, which has probably allowed these rare butterflies to persist in Europe. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.


Asunto(s)
Hormigas/parasitología , Coevolución Biológica , Mariposas Diurnas/fisiología , Interacciones Huésped-Parásitos , Comportamiento de Nidificación , Simbiosis , Animales , Europa (Continente) , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...