Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664022

RESUMEN

Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.


Asunto(s)
Astrocitos , Diferenciación Celular , Linaje de la Célula , Dinaminas , Mitocondrias , Dinámicas Mitocondriales , Células-Madre Neurales , Neuronas , Oligodendroglía , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Mitocondrias/metabolismo , Ratones , Diferenciación Celular/genética , Linaje de la Célula/genética , Astrocitos/metabolismo , Astrocitos/citología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Neuronas/metabolismo , Neuronas/citología , Células Cultivadas , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Neurogénesis , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166993, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142760

RESUMEN

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Ratones , Humanos , Animales , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/terapia , Enfermedad de Niemann-Pick Tipo C/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Colesterol 24-Hidroxilasa/uso terapéutico , Colesterol/metabolismo , Encéfalo/metabolismo , Cerebelo/patología
3.
Eur J Pharmacol ; 959: 176079, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37802277

RESUMEN

Postnatal neurogenesis has been shown to rely on the endocannabinoid system. Here we aimed at unravelling the role of Cannabidivarin (CBDV), a non-psychoactive cannabinoid, with high affinity for the non-classical cannabinoid receptor TRPV1, on subventricular zone (SVZ) postnatal neurogenesis. Using the neurosphere assay, SVZ-derived neural stem/progenitor cells (NSPCs) were incubated with CBDV and/or 5'-Iodoresinferotoxin (TRPV1 antagonist), and their role on cell viability, proliferation, and differentiation were dissected. CBDV was able to promote, through a TRPV1-dependent mechanism, cell survival, cell proliferation and neuronal differentiation. Furthermore, pulse-chase experiments revealed that CBDV-induced neuronal differentiation was a result of cell cycle exit of NSPCs. Regarding oligodendrocyte differentiation, CBDV inhibited oligodendrocyte differentiation and maturation. Since our data suggested that the CBDV-induced modulation of NSPCs acted via TRPV1, a sodium-calcium channel, and that intracellular calcium levels are known regulators of NSPCs fate and neuronal maturation, single cell calcium imaging was performed to evaluate the functional response of SVZ-derived cells. We observed that CBDV-responsive cells displayed a two-phase calcium influx profile, being the initial phase dependent on TRPV1 activation. Taken together, this work unveiled a novel and untapped neurogenic potential of CBDV via TRPV1 modulation. These findings pave the way to future neural stem cell biological studies and repair strategies by repurposing this non-psychoactive cannabinoid as a valuable therapeutic target.


Asunto(s)
Cannabinoides , Ventrículos Laterales , Calcio , Neurogénesis/fisiología , Diferenciación Celular , Cannabinoides/farmacología , Proliferación Celular
4.
Neuropharmacology ; 237: 109640, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348675

RESUMEN

The purinergic system includes P1 and P2 receptors, which are activated by ATP and its metabolites. They are expressed in adult neuronal and glial cells and are crucial in brain function, including neuromodulation and neuronal signaling. As P1 and P2 receptors are expressed throughout embryogenesis and development, purinergic signaling also has an important role in the development of the peripheral and central nervous system. In this review, we present the expression pattern and activity of purinergic receptors and of their signaling pathways during embryonic and postnatal development of the nervous system. In particular, we review the involvement of the purinergic signaling in all the crucial steps of brain development i.e. in neural stem cell proliferation, neuronal differentiation and migration as well as in astrogliogenesis and oligodendrogenesis. Then, we review data showing a crucial role of the ATP and adenosine signaling pathways in the formation of the peripheral neuromuscular junction and of central GABAergic and glutamatergic synapses. Finally, we examine the consequences of deregulation of the purinergic system during development and discuss the therapeutic potential of targeting it at adult stage in diseases with reactivation of the ATP and adenosine pathway. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Asunto(s)
Neuronas , Receptores Purinérgicos , Neuronas/metabolismo , Receptores Purinérgicos/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Encéfalo/metabolismo , Proliferación Celular
5.
Brain Commun ; 4(3): fcac076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620168

RESUMEN

Studies have correlated excessive S100B, a small inflammatory molecule, with demyelination and associated inflammatory processes occurring in multiple sclerosis. The relevance of S100B in multiple sclerosis pathology brought an emerging curiosity highlighting its use as a potential therapeutic target to reduce damage during the multiple sclerosis course, namely during inflammatory relapses. We examined the relevance of S100B and further investigated the potential of S100B-neutralizing small-molecule pentamidine in chronic experimental autoimmune encephalomyelitis. S100B depletion had beneficial pathological outcomes and based on promising results of a variety of S100B blockade strategies in an ex vivo demyelinating model, we choose pentamidine to assay its role in the in vivo experimental autoimmune encephalomyelitis. We report that pentamidine prevents more aggressive clinical symptoms and improves recovery of chronic experimental autoimmune encephalomyelitis. Blockade of S100B by pentamidine protects against oligodendrogenesis impairment and neuroinflammation by reducing astrocyte reactivity and microglia pro-inflammatory phenotype. Pentamidine also increased regulatory T cell density in the spinal cord suggesting an additional immunomodulatory action. These results showed the relevance of S100B as a main driver of neuroinflammation in experimental autoimmune encephalomyelitis and identified an uncharacterized mode of action of pentamidine, strengthening the possibility to use this drug as an anti-inflammatory and remyelinating therapy for progressive multiple sclerosis.

6.
Curr Issues Mol Biol ; 43(3): 2305-2319, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34940136

RESUMEN

The increasing consumption of sugar and fat seen over the last decades and the consequent overweight and obesity, were recently linked with a deleterious effect on cognition and synaptic function. A major question, which remains to be clarified, is whether obesity in the elderly is an additional risk factor for cognitive impairment. We aimed at unravelling the impact of a chronic high caloric diet (HCD) on memory performance and synaptic plasticity in aged rats. Male rats were kept on an HCD or a standard diet (control) from 1 to 24 months of age. The results showed that under an HCD, aged rats were obese and displayed significant long-term recognition memory impairment when compared to age-matched controls. Ex vivo synaptic plasticity recorded from hippocampal slices from HCD-fed aged rats revealed a reduction in the magnitude of long-term potentiation, accompanied by a decrease in the levels of the brain-derived neurotrophic factor receptors TrkB full-length (TrkB-FL). No alterations in neurogenesis were observed, as quantified by the density of immature doublecortin-positive neurons in the hippocampal dentate gyrus. This study highlights that obesity induced by a chronic HCD exacerbates age-associated cognitive decline, likely due to impaired synaptic plasticity, which might be associated with deficits in TrkB-FL signaling.


Asunto(s)
Dieta , Trastornos de la Memoria/etiología , Plasticidad Neuronal , Factores de Edad , Animales , Biomarcadores , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ingestión de Alimentos , Inmunohistoquímica , Masculino , Ratas
8.
Adv Exp Med Biol ; 1331: 77-94, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453294

RESUMEN

Neurogenesis is maintained in the mammalian brain throughout adulthood in two main regions: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Adult neurogenesis is a process composed of multiple steps by which neurons are generated from dividing adult neural stem cells and migrate to be integrated into existing neuronal circuits. Alterations in any of these steps impair neurogenesis and may compromise brain function, leading to cognitive impairment and neurodegenerative diseases. Therefore, understanding the cellular and molecular mechanisms that modulate adult neurogenesis is the centre of attention of regenerative research. In this chapter, we review the main properties of the adult neurogenic niches.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Animales , Ventrículos Laterales , Neurogénesis , Neuronas
9.
Adv Exp Med Biol ; 1331: 95-115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453295

RESUMEN

Cell survival during adult neurogenesis and the modulation of each step, namely, proliferation, lineage differentiation, migration, maturation, and functional integration of the newborn cells into the existing circuitry, is regulated by intrinsic and extrinsic factors. Transduction of extracellular niche signals triggers the activation of intracellular mechanisms that regulate adult neurogenesis by affecting gene expression. While the intrinsic factors include transcription factors and epigenetic regulators, the extrinsic factors are molecular signals that are present in the neurogenic niche microenvironment. These include morphogens, growth factors, neurotransmitters, and signaling molecules secreted as soluble factors or associated to the extracellular matrix. Among these molecular mechanisms are neurotrophins and neurotrophin receptors which have been implicated in the regulation of adult neurogenesis at different levels, with brain-derived neurotrophic factor (BDNF) being the most studied neurotrophin. In this chapter, we review the current knowledge about the role of neurotrophins in the regulation of adult neurogenesis in both the subventricular zone (SVZ) and the hippocampal subgranular zone (SGZ).


Asunto(s)
Células Madre Adultas , Factor Neurotrófico Derivado del Encéfalo , Adulto , Factor Neurotrófico Derivado del Encéfalo/genética , Diferenciación Celular , Humanos , Ventrículos Laterales , Neurogénesis
10.
J Alzheimers Dis ; 82(3): 1183-1202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34151790

RESUMEN

BACKGROUND: The use of Alzheimer's disease (AD) models obtained by intracerebral infusion of amyloid-ß (Aß) has been increasingly reported in recent years. Nonetheless, these models may present important challenges. OBJECTIVE: We have focused on canonical mechanisms of hippocampal-related neural plasticity to characterize a rat model obtained by an intracerebroventricular (icv) injection of soluble amyloid-ß42 (Aß42). METHODS: Animal behavior was evaluated in the elevated plus maze, Y-Maze spontaneous or forced alternation, Morris water maze, and open field, starting 2 weeks post-Aß42 infusion. Hippocampal neurogenesis was assessed 3 weeks after Aß42 injection. Aß deposition, tropomyosin receptor kinase B levels, and neuroinflammation were appraised at 3 and 14 days post-Aß42 administration. RESULTS: We found that immature neuronal dendritic morphology was abnormally enhanced, but proliferation and neuronal differentiation in the dentate gyrus was conserved one month after Aß42 injection. Surprisingly, animal behavior did not reveal changes in cognitive performance nor in locomotor and anxious-related activity. Brain-derived neurotrophic factor related-signaling was also unchanged at 3 and 14 days post-Aß icv injection. Likewise, astrocytic and microglial markers of neuroinflammation in the hippocampus were unaltered in these time points. CONCLUSION: Taken together, our data emphasize a high variability and lack of behavioral reproducibility associated with these Aß injection-based models, as well as the need for its further optimization, aiming at addressing the gap between preclinical AD models and the human disorder.


Asunto(s)
Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Modelos Animales de Enfermedad , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/toxicidad , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/administración & dosificación , Animales , Hipocampo/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Plasticidad Neuronal/efectos de los fármacos , Fragmentos de Péptidos/administración & dosificación , Ratas , Ratas Wistar
11.
Stem Cells ; 39(10): 1362-1381, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34043863

RESUMEN

Adenosine A2A receptor (A2A R) activation modulates several brain processes, ranging from neuronal maturation to synaptic plasticity. Most of these actions occur through the modulation of the actions of the neurotrophin brain-derived neurotrophic factor (BDNF). In this work, we studied the role of A2A Rs in regulating postnatal and adult neurogenesis in the rat hippocampal dentate gyrus (DG). Here, we show that A2A R activation with CGS 21680 promoted neural stem cell self-renewal, protected committed neuronal cells from cell death and contributed to a higher density of immature and mature neuronal cells, particularly glutamatergic neurons. Moreover, A2A R endogenous activation was found to be essential for BDNF-mediated increase in cell proliferation and neuronal differentiation. Our findings contribute to further understand the role of adenosinergic signaling in the brain and may have an impact in the development of strategies for brain repair under pathological conditions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Hipocampo , Neurogénesis , Receptor de Adenosina A2A , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Ratas , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo
13.
Cells ; 11(1)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011652

RESUMEN

Neural stem cells (NSCs), crucial for memory in the adult brain, are also pivotal to buffer depressive behavior. However, the mechanisms underlying the boost in NSC activity throughout life are still largely undiscovered. Here, we aimed to explore the role of deacetylase Sirtuin 3 (SIRT3), a central player in mitochondrial metabolism and oxidative protection, in the fate of NSC under aging and depression-like contexts. We showed that chronic treatment with tert-butyl hydroperoxide induces NSC aging, markedly reducing SIRT3 protein. SIRT3 overexpression, in turn, restored mitochondrial oxidative stress and the differentiation potential of aged NSCs. Notably, SIRT3 was also shown to physically interact with the long chain acyl-CoA dehydrogenase (LCAD) in NSCs and to require its activation to prevent age-impaired neurogenesis. Finally, the SIRT3 regulatory network was investigated in vivo using the unpredictable chronic mild stress (uCMS) paradigm to mimic depressive-like behavior in mice. Interestingly, uCMS mice presented lower levels of neurogenesis and LCAD expression in the same neurogenic niches, being significantly rescued by physical exercise, a well-known upregulator of SIRT3 and lipid metabolism. Our results suggest that targeting NSC metabolism, namely through SIRT3, might be a suitable promising strategy to delay NSC aging and confer stress resilience.


Asunto(s)
Envejecimiento/metabolismo , Antioxidantes/metabolismo , Depresión/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Neurogénesis , Sirtuina 3/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Senescencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , terc-Butilhidroperóxido/toxicidad
14.
Front Cell Dev Biol ; 8: 610427, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363173

RESUMEN

Engineering brain organoids from human induced pluripotent stem cells (hiPSCs) is a powerful tool for modeling brain development and neurological disorders. Rett syndrome (RTT), a rare neurodevelopmental disorder, can greatly benefit from this technology, since it affects multiple neuronal subtypes in forebrain sub-regions. We have established dorsal and ventral forebrain organoids from control and RTT patient-specific hiPSCs recapitulating 3D organization and functional network complexity. Our data revealed a premature development of the deep-cortical layer, associated to the formation of TBR1 and CTIP2 neurons, and a lower expression of neural progenitor/proliferative cells in female RTT dorsal organoids. Moreover, calcium imaging and electrophysiology analysis demonstrated functional defects of RTT neurons. Additionally, assembly of RTT dorsal and ventral organoids revealed impairments of interneuron's migration. Overall, our models provide a better understanding of RTT during early stages of neural development, demonstrating a great potential for personalized diagnosis and drug screening.

15.
Pharmacol Res ; 162: 105281, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33161136

RESUMEN

Neurotrophins are a well-known family of neurotrophic factors that play an important role both in the central and peripheral nervous systems, where they modulate neuronal survival, development, function and plasticity. Brain-derived neurotrophic factor (BDNF) possesses diverse biological functions which are mediated by the activation of two main classes of receptors, the tropomyosin-related kinase (Trk) B and the p75 neurotrophin receptor (p75NTR). The therapeutic potential of BDNF has drawn attention since dysregulation of its signalling cascades has been suggested to underlie the pathogenesis of both common and rare diseases. Multiple strategies targeting this neurotrophin have been tested; most have found obstacles that ultimately hampered their effectiveness. This review focuses on the involvement of BDNF and its receptors in the pathophysiology of Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Rett Syndrome (RTT). We describe the known mechanisms leading to the impairment of BDNF/TrkB signalling in these disorders. Such mechanistic insight highlights how BDNF signalling compromise can take various shapes, nearly disease-specific. Therefore, BDNF-based therapeutic strategies must be specifically tailored and are more likely to succeed if a combination of resources is employed.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Enfermedades del Sistema Nervioso/terapia , Enfermedades Raras/terapia , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades Raras/metabolismo , Transducción de Señal
16.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33022963

RESUMEN

Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.


Asunto(s)
Cannabinoides/uso terapéutico , Epilepsia/tratamiento farmacológico , Células-Madre Neurales/trasplante , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Epilepsia/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Neurogénesis/efectos de los fármacos , Convulsiones/patología
17.
Front Pharmacol ; 11: 985, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733240

RESUMEN

Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer's disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.c.v.) injection of KTP ameliorates memory impairments in a sporadic rat model of AD. However, this administration route is far from being a suitable therapeutic strategy. Here, we evaluated if the blood-brain permeant KTP-derivative, KTP-NH2, when systemically administered, would be effective in preventing memory deficits in a sporadic AD animal model and if so, which would be the synaptic correlates of that action. The sporadic AD model was induced in male Wistar rats through i.c.v. injection of amyloid ß peptide (Aß). Animals were treated for 20 days with KTP-NH2 (32.3 mg/kg, intraperitoneally (i.p.), starting at day 3 after Aß administration) before memory testing (Novel object recognition (NOR) and Y-maze (YM) tests). Animals were then sacrificed, and markers for gliosis were assessed by immunohistochemistry and Western blot analysis. Synaptic correlates were assessed by evaluating theta-burst induced long term potentiation (LTP) of field excitatory synaptic potentials (fEPSPs) recorded from hippocampal slices and cortical spine density analysis. In the absence of KTP-NH2 treatment, Aß-injected rats had clear memory deficits, as assessed through NOR or YM tests. Importantly, these memory deficits were absent in Aß-injected rats that had been treated with KTP-NH2, which scored in memory tests as control (sham i.c.v. injected) rats. No signs of gliosis could be detected at the end of the treatment in any group of animals. LTP magnitude was significantly impaired in hippocampal slices that had been incubated with Aß oligomers (200 nM) in the absence of KTP-NH2. Co-incubation with KTP-NH2 (50 nM) rescued LTP toward control values. Similarly, Aß caused a significant decrease in spine density in cortical neuronal cultures, and this was prevented by co-incubation with KTP-NH2 (50 nM). In conclusion, the present data demonstrate that i.p. KTP-NH2 treatment counteracts Aß-induced memory impairments in an AD sporadic model, possibly through the rescuing of synaptic plasticity mechanisms.

18.
Neurobiol Dis ; 145: 105043, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32798727

RESUMEN

Rett syndrome (RTT; OMIM#312750) is mainly caused by mutations in the X-linked MECP2 gene (methyl-CpG-binding protein 2 gene; OMIM*300005), which leads to impairments in the brain-derived neurotrophic factor (BDNF) signalling. The boost of BDNF mediated effects would be a significant breakthrough but it has been hampered by the difficulty to administer BDNF to the central nervous system. Adenosine, an endogenous neuromodulator, may accomplish that role since through A2AR it potentiates BDNF synaptic actions in healthy animals. We thus characterized several hallmarks of the adenosinergic and BDNF signalling in RTT and explored whether A2AR activation could boost BDNF actions. For this study, the RTT animal model, the Mecp2 knockout (Mecp2-/y) (B6.129P2 (C)-Mecp2tm1.1Bird/J) mouse was used. Whenever possible, parallel data was also obtained from post-mortem brain samples from one RTT patient. Ex vivo extracellular recordings of field excitatory post-synaptic potentials in CA1 hippocampal area were performed to evaluate synaptic transmission and long-term potentiation (LTP). RT-PCR was used to assess mRNA levels and Western Blot or radioligand binding assays were performed to evaluate protein levels. Changes in cortical and hippocampal adenosine content were assessed by liquid chromatography with diode array detection (LC/DAD). Hippocampal ex vivo experiments revealed that the facilitatory actions of BDNF upon LTP is absent in Mecp2-/y mice and that TrkB full-length (TrkB-FL) receptor levels are significantly decreased. Extracts of the hippocampus and cortex of Mecp2-/y mice revealed less adenosine amount as well as less A2AR protein levels when compared to WT littermates, which may partially explain the deficits in adenosinergic tonus in these animals. Remarkably, the lack of BDNF effect on hippocampal LTP in Mecp2-/y mice was overcome by selective activation of A2AR with CGS21680. Overall, in Mecp2-/y mice there is an impairment on adenosinergic system and BDNF signalling. These findings set the stage for adenosine-based pharmacological therapeutic strategies for RTT, highlighting A2AR as a therapeutic target in this devastating pathology.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Síndrome de Rett/metabolismo , Transducción de Señal/fisiología , Animales , Hipocampo/metabolismo , Proteína 2 de Unión a Metil-CpG , Ratones , Ratones Noqueados , Receptor trkB/metabolismo , Síndrome de Rett/genética
19.
Stem Cells Dev ; 29(17): 1099-1117, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32723008

RESUMEN

The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.


Asunto(s)
Células Madre Adultas/trasplante , Trastornos Mentales/terapia , Células-Madre Neurales/trasplante , Animales , Encéfalo/patología , Humanos , Nicho de Células Madre
20.
J Vis Exp ; (159)2020 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-32510488

RESUMEN

The neurosphere assay is an extremely useful in vitro technique for studying the inherent properties of neural stem/progenitor cells (NSPCs) including proliferation, self-renewal and multipotency. In the postnatal and adult brain, NSPCs are mainly present in two neurogenic niches: the subventricular zone (SVZ) lining the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus (DG). The isolation of the neurogenic niches from postnatal brain allows obtaining a higher amount of NSPCs in culture with a consequent advantage of higher yields. The close contact between cells within each neurosphere creates a microenvironment that may resemble neurogenic niches. Here, we describe, in detail, how to generate SVZ- and DG-derived neurosphere cultures from 1-3-day-old (P1-3) mice, as well as passaging, for neurosphere expansion. This is an advantageous approach since the neurosphere assay allows a fast generation of NSPC clones (6-12 days) and contributes to a significant reduction in the number of animal usage. By plating neurospheres in differentiative conditions, we can obtain a pseudomonolayer of cells composed of NSPCs and differentiated cells of different neural lineages (neurons, astrocytes and oligodendrocytes) allowing the study of the actions of intrinsic or extrinsic factors on NSPC proliferation, differentiation, cell survival and neuritogenesis.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Células-Madre Neurales/citología , Neurogénesis , Animales , Astrocitos/citología , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Hipocampo/citología , Ventrículos Laterales/citología , Ratones , Neuronas/citología , Oligodendroglía/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...