Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893298

RESUMEN

Simple and sensitive determination of total antioxidant capacity (TAC) in food samples is highly desirable. In this work, an electrochemical platform was established based on a silica nanochannel film (SNF)-modified electrode, facilitating fast and highly sensitive analysis of TAC in colored food samples. SNF was grown on low-cost and readily available tin indium oxide (ITO) electrode. Fe3+-phenanthroline complex-Fe(III)(phen)3 was applied as the probe, and underwent chemical reduction to form Fe2+-phenanthroline complex-Fe(II)(phen)3 in the presence of antioxidants. Utilizing an oxidative voltage of +1 V, chronoamperometry was employed to measure the current generated by the electrochemical oxidation of Fe(II)(phen)3, allowing for the assessment of antioxidants. As the negatively charged SNF displayed remarkable enrichment towards positively charged Fe(II)(phen)3, the sensitivity of detection can be significantly improved. When Trolox was employed as the standard antioxidant, the electrochemical sensor demonstrated a linear detection range from 0.01 µM to 1 µM and from 1 µM to 1000 µM, with a limit of detection (LOD) of 3.9 nM. The detection performance is better that that of the conventional colorimetric method with a linear de range from 1 µM to 40 µM. Owing to the anti-interfering ability of nanochannels, direct determination of TAC in colored samples including coffee, tea, and edible oils was realized.


Asunto(s)
Antioxidantes , Técnicas Electroquímicas , Electrodos , Análisis de los Alimentos , Oxidación-Reducción , Antioxidantes/análisis , Antioxidantes/química , Técnicas Electroquímicas/métodos , Análisis de los Alimentos/métodos , Límite de Detección , Fenantrolinas/química , Dióxido de Silicio/química
2.
Front Nutr ; 11: 1352938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559779

RESUMEN

Development of simple and reliable sensor for detecting vitamin content is of great significance for guiding human nutrition metabolism, overseeing the quality of food or drugs, and advancing the treatment of related diseases. In this work, a simple electrochemical sensor was conveniently fabricated by modification a carbon electrode with vertically-ordered mesoporous silica film (VMSF), enabling highly sensitive electrochemical detection of vitamin B2 (VB2) based on the dual enrichment of the analyte by the supporting electrode and nanochannels. The widely used glassy carbon electrode (GCE), was preactivated using simple electrochemical polarization, The resulting preactivated GCE (p-GCE) exhibited improved potential resolution ability and enhanced peak current of VB2. Stable modification of VMSF on p-GCE (VMSF/p-GCE) was achieved without introducing another binding layer. The dual enrichment effect of the supporting p-GCE and nanochannels facilitated sensitive detection of VB2, with a linear concentration ranged from 20 nM to 7 µM and from 7 µM to 20 µM. The limit of detection (LOD), determined based on a signal-to-noise ratio of three (S/N = 3), was found to be 11 nM. The modification of ultra-small nanochannels of VMSF endowed VMSF/p-GCE with excellent anti-interference and anti-fouling performance, along with high stability. The constructed sensor demonstrated the capability to achieve direct electrochemical detection of VB2 in turbid samples including milk and leachate of compound vitamin B tablet without the need for complex sample pretreatment. The fabricated electrochemical can be easily regenerated and has high reusability. The advantages of simple preparation, high detection performance, and good regeneration endow the constructed electrochemical sensor with great potential for direct detection of small molecule in complex samples.

3.
Molecules ; 29(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38398610

RESUMEN

The convenient construction of carbon-based electrochemical immunosensors with high performance is highly desirable for the efficient detection of tumor biomarkers. In this work, an electrochemical immunosensor was fabricated by integrating a biofunctionalized mesoporous silica nanochannel film with a carbon-based electrode, which can enable the sensitive determination of carcinoembryonic antigen (CEA) in serum. The commonly used carbonaceous electrode, glassy carbon electrode (GCE), was employed as the supporting electrode and was pre-treated through electrochemical polarization to achieve the stable binding of a vertically ordered mesoporous silica film with amino groups (NH2-VMSF) without the use of any adhesive layer. To fabricate the immunorecognition interface, antibodies were covalently immobilized after the amino groups on the outer surface of NH2-VMSF was derivatized to aldehyde groups. The presence of amino sites within the high-density nanochannels of NH2-VMSF can facilitate the migration of negatively charged redox probes (Fe(CN)63-/4-) to the supporting electrode through electrostatic adsorption, leading to the generation of electrochemical signals. In the presence of CEA, the formation of immunocomplexes on the recognitive interface can reduce the electrochemical signal of Fe(CN)63-/4- on the supporting electrode. Based on this principle, the sensitive electrochemical detection of CEA was achieved. CEA can be determined to range from 0.01 ng mL-1 to 100 ng mL-1 with a limit of detection of 6.3 pg mL-1. The fabricated immunosensor exhibited high selectivity, and the detection of CEA in fetal bovine serum was achieved.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario , Límite de Detección , Inmunoensayo , Oro/química , Electrodos , Carbono/química , Dióxido de Silicio , Técnicas Electroquímicas
4.
Molecules ; 28(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067596

RESUMEN

The effective and sensitive detection of the important biomarker, C-reactive protein (CRP), is of great significance in clinical diagnosis. The development of a convenient and highly sensitive electrochemiluminescence (ECL) aptasensor with an immobilized emitter probe is highly desirable. In this work, a probe-integrated ECL aptamer sensor was constructed based on a bipolar silica nanochannel film (bp-SNF) modified electrode for the highly sensitive ECL detection of CRP. The bp-SNF, modified on an ITO electrode, consisted of a dual-layered SNF film, including the negatively charged inner SNF (n-SNF) and the outer SNF with a positive charge and amino groups (p-SNF). The ECL emitter, tris(bipyridine) ruthenium (II) (Ru(bpy)32+), was stably immobilized in a nanochannel of bp-SNF using the dual electrostatic interactions with n-SNF attracting and p-SNF repelling. The amino groups on the outer surface of bp-SNF were aldehyde derivatized, allowing for the covalent immobilization of recognitive aptamers (5'-NH2-CGAAGGGGATTCGAGGGGTGATTGCGTGCTCCATTTGGTG-3'), leading to the recognition interface. When CRP bound to the aptamer on the recognition interface, the formed complex increased the interface resistance and reduced the diffusion of the co-reactant tripropylamine (TPA) into the nanochannels, leading to a decrease in the ECL signal. Based on this mechanism, the constructed aptamer sensor could achieve a sensitive ECL detection of CRP ranging from 0.01 to 1000 ng/mL, with a detection limit (DL) of 8.5 pg/mL. The method for constructing this probe-integrated ECL aptamer sensor is simple, and it offers a high probe stability, good selectivity, and high sensitivity.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Proteína C-Reactiva , Mediciones Luminiscentes/métodos , Dióxido de Silicio
5.
Front Chem ; 11: 1274424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876852

RESUMEN

Sensitive detection of procalcitonin (PCT) in serum is crucial for the timely diagnosis and treatment of rheumatoid arthritis. In this work, an electrochemiluminescence (ECL) detection platform is developed based on in-situ growth of Au nanoparticles (AuNPs) in nanochannels and an analyte-gated detection signal, which can realize ECL determination of PCT with high sensitivity. Vertically ordered mesoporous silica films with amine groups and uniform nanochannel array (NH2-VMSF) is easily grown on the supporting indium tin oxide (ITO) electrode through electrochemical assisted self-assembly method (EASA). Anchored by the amino groups, AuNPs were grown in-situ within the nanochannels to catalyze the generation of reactive oxygen species (ROS) and amplify the ECL signal of luminol. An immuno-recognitive interface is constructed on the outer surface of NH2-VMSF, through covalent immobilization of PCT antibodies. In the presence of PCT, the immunocomplex will hinder the diffusion of luminol and co-reactants, leading to a gating effect and decreased ECL signals. Based on this principle, the immunosensor can detect PCT in the range from 10 pg/mL to 100 ng mL-1 with a limit of detection (LOD) of 7 pg mL-1. The constructed immunosensor can also be used for detecting PCT in serum. The constructed sensor has advantages of simple fabrication and sensitive detection, demonstrating great potential in real sample analysis.

6.
Front Chem ; 11: 1222067, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727833

RESUMEN

Designing fast and simple quantitative methods on cheap and disposable electrodes for the early detection of HeLa cells is highly desirable for clinical diagnostics and public health. In this work, we developed a label-free and sensitive electrochemical cytosensor for HeLa cell detection based on the gated molecular transport across vertically ordered mesoporous silica films (VMSFs) on the disposable indium tin oxide (ITO) electrode. As high affinity for a folate receptor existed on the membrane of HeLa cancer cells, folic acid (FA) functionalized VMSF could regulate the transport of electrochemical probe (Fe(CN)6 3-) by the specific recognition and adhesion of HeLa cells toward the VMSF surface. In addition, VMSF, served as a solid skeleton, is able to effectively prevent the direct contact of cells with the underlying electrode, remaining the underlying electrode activity and favoring the diffusion of Fe(CN)6 3-. Once specific adhesion of HeLa cells to the VMSF surface happens, Fe(CN)6 3- redox probe exhibits impeded transport in the silica nanochannels, ultimately resulting in the decreased electrochemical responses and realizing the quantitative determination of HeLa cells with a broad linear range (101-105 cells/mL) and a low limit of detection (4 cells/mL). The proposed electrochemical cytosensor shows a great potential application for the early diagnosis of cervical cancer.

7.
Molecules ; 28(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37764335

RESUMEN

Rapid, highly sensitive, and accurate detection of tumor biomarkers in serum is of great significance in cancer screening, early diagnosis, and postoperative monitoring. In this study, an electrochemiluminescence (ECL) immunosensing platform was constructed by enhancing the ECL signal through in situ growth of platinum nanoparticles (PtNPs) in a nanochannel array, which can achieve highly sensitive detection of the tumor marker carcinoembryonic antigen (CEA). An inexpensive and readily available indium tin oxide (ITO) glass electrode was used as the supporting electrode, and a layer of amino-functionalized vertically ordered mesoporous silica film (NH2-VMSF) was grown on its surface using an electrochemically assisted self-assembly method (EASA). The amino groups within the nanochannels served as anchoring sites for the one-step electrodeposition of PtNPs, taking advantage of the confinement effect of the ultrasmall nanochannels. After the amino groups on the outer surface of NH2-VMSF were derivatized with aldehyde groups, specific recognition antibodies were covalently immobilized followed by blocking nonspecific binding sites to create an immunorecognition interface. The PtNPs, acting as nanocatalysts, catalyzed the generation of reactive oxygen species (ROS) with hydrogen peroxide (H2O2), significantly enhancing the ECL signal of the luminol. The ECL signal exhibited high stability during continuous electrochemical scanning. When the CEA specifically bound to the immunorecognition interface, the resulting immune complexes restricted the diffusion of the ECL emitters and co-reactants towards the electrode, leading to a reduction in the ECL signal. Based on this immune recognition-induced signal-gating effect, the immunosensor enabled ECL detection of CEA with a linear range of 0.1 pg mL-1 to 1000 ng mL-1 with a low limit of detection (LOD, 0.03 pg mL-1). The constructed immunosensor demonstrated excellent selectivity and can achieve CEA detection in serum.

8.
Molecules ; 28(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37375128

RESUMEN

The simple and accurate monitoring of blood glucose level is of great significance for the prevention and control of diabetes. In this work, a magnetic nanozyme was fabricated based on loading nitrogen-doped carbon dots (N-CDs) on mesoporous Fe3O4 nanoparticles for the colorimetric detection of glucose in human serum. Mesoporous Fe3O4 nanoparticles were easily synthesized using a solvothermal method, and N-CDs were then prepared in situ and loaded on the Fe3O4 nanoparticles, leading to a magnetic N-CDs/Fe3O4 nanocomposite. The N-CDs/Fe3O4 nanocomposite exhibited good peroxidase-like activity and could catalyze the oxidation of the colorless enzyme substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxide (ox-TMB) in the presence of hydrogen peroxide (H2O2). When the N-CDs/Fe3O4 nanozyme was combined with glucose oxidase (Gox), Gox catalyzed the oxidization of glucose, producing H2O2 and leading to the oxidation of TMB under the catalysis of the N-CDs/Fe3O4 nanozyme. Based on this mechanism, a colorimetric sensor was constructed for the sensitive detection of glucose. The linear range for glucose detection was from 1 to 180 µM, and the limit of detection (LOD) was 0.56 µM. The recovered nanozyme through magnetic separation showed good reusability. The visual detection of glucose was also realized by preparing an integrated agarose hydrogel containing the N-CDs/Fe3O4 nanozyme, glucose oxidase, and TMB. The colorimetric detection platform has an enormous potential for the convenient detection of metabolites.


Asunto(s)
Glucosa , Nanopartículas , Humanos , Carbono , Peróxido de Hidrógeno , Glucosa Oxidasa , Colorimetría/métodos , Nitrógeno , Fenómenos Magnéticos , Peroxidasa/metabolismo
9.
Front Chem ; 11: 1126213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874060

RESUMEN

Sensitive determination of noradrenaline (NE), the pain-related neurotransmitters and hormone, in complex whole blood is of great significance. In this work, an electrochemical sensor was simply constructed on the pre-activated glassy carbon electrode (p-GCE) modified with vertically-ordered silica nanochannels thin film bearing amine groups (NH2-VMSF) and in-situ deposited Au nanoparticles (AuNPs). The simple and green electrochemical polarization was employed to pre-activate GCE to realize the stable binding of NH2-VMSF on the surface of electrode without the use of any adhesive layer. NH2-VMSF was conveniently and rapidly grown on p-GCE by electrochemically assisted self-assembly (EASA). With amine group as the anchor sites, AuNPs were in-situ electrochemically deposited on the nanochannels to improve the electrochemical signals of NE. Owing to signal amplification from gold nanoparticles, the fabricated AuNPs@NH2-VMSF/p-GCE sensor can achieve electrochemical detection of NE ranged from 50 nM to 2 µM and from 2 µM to 50 µM with a low limit of detection (LOD) of 10 nM. The constructed sensor exhibited high selectivity and can be easily regenerated and reused. Owing to the anti-fouling ability of nanochannel array, direct electroanalysis of NE in human whole blood was also realized.

10.
Front Chem ; 11: 1121450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970409

RESUMEN

Sensitive detection of tumor biomarkers is crucial for early diagnosis and prognosis evaluation of cancer. Owing to no need of labelled antibody, formation of sandwich immunocomplexes and additional solution-based probe, probe-integrated electrochemical immunosensor for reagentless detection of tumor biomarkers is highly desirable. In this work, sensitive and reagentless detection of a tumor biomarker is realized based on fabrication of a probe-integrated immunosensor by confining redox probe in electrostatic nanocage array modified electrode. Indium tin oxide (ITO) electrode is employed as the supporting electrode because it is cheap and easily available. The silica nanochannel array consisted of two layers with opposite charges or different pore diameters was designated as bipolar films (bp-SNA). In this work, Electrostatic nanocage array is equipped on ITO electrode by growth of bp-SNA with two layered nanochannel array having different charge properties including a negatively charged silica nanochannel array (n-SNA) and a positively charged amino-modified SNA (p-SNA). Each SNA can be easily grown with 15 s using electrochemical assisted self-assembly method (EASA). Methylene blue (MB) is applied as the model electrochemical probe with positive charge to be confined in electrostatic nanocage array with stirring. The combination of the electrostatic attraction from n-SNA and the electrostatic repulsion from p-SNA endows MB with highly stable electrochemical signal during continuous scanning. When the amino groups of p-SNA are modified using the bifunctional glutaraldehyde (GA) to introduce aldehydes, the recognitive antibody (Ab) of the most commonly used tumor biomarker, carcinoembryonic antigen (CEA), can be covalently immobilized. After the non-specific sites are blocked, the immunosensor is successfully fabricated. As the formation of antigen-antibody complex decreases electrochemical signal, the immunosensor can achieve reagentless detection of CEA ranged from 10 pg/mL to 100 ng/mL with a low limit of detection (LOD, 4 pg/mL). Determination of CEA in human serum samples is realized with high accuracy.

11.
Molecules ; 27(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557774

RESUMEN

A disposable and portable electrochemical sensor was fabricated by integrating vertically-ordered silica mesoporous films (VMSF) and electrochemically reduced graphene (ErGO) on a screen-printed carbon electrode (SPCE). Such VMSF/ErGO/SPCEs could be prepared by a simple and controllable electrochemical method. Stable growth of VMSF on SPCE could be accomplished by the introduction of an adhesive ErGO nanolayer owing to its oxygen-containing groups and two-dimensional (2D) planar structure. An outer VMSF layer acting as a protective coating is able to prevent the leakage of the inner ErGO layer from the SPCE surface. Thanks to the electrostatic permselectivity and anti-fouling capacity of VMSF and to the good electroactive activity of ErGO, binary nanocomposites of VMSF and ErGO endow the SPCE with excellent analytical performance, which could be used to quantitatively detect doxorubicin (DOX) in biological samples (human serum and urine) with high sensitivity, good long-term stability, and low sample amounts.


Asunto(s)
Incrustaciones Biológicas , Grafito , Nanocompuestos , Humanos , Grafito/química , Dióxido de Silicio , Incrustaciones Biológicas/prevención & control , Carbono , Nanocompuestos/química , Técnicas Electroquímicas/métodos , Electrodos
12.
Molecules ; 27(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36364206

RESUMEN

The construction of novel fluorescent nanozymes is highly desirable for providing new strategies for nanozyme-based sensing systems. Herein, a novel ratiometric fluorescence sensing platform was constructed based on carbon dots (CDs) as both luminophores and nanozymes, which could realize the sensitive detection of hydrogen peroxide (H2O2). CDs with peroxidase-mimicking activity were prepared with a one-step hydrothermal method using L-histidine as an inexpensive precursor. CDs had bright blue fluorescence. Due to the pseudo-peroxidase activity, CDs catalyzed the oxidation of o-phenylenediamine (OPD) with H2O2 to generate 2,3-diaminophenolazine (DAP). The fluorescence resonance energy transfer (FRET) between CDs and DAP resulted in a decrease in the fluorescence of CDs and an increase in the fluorescence of DAP, leading to a ratiometric fluorescence system. The free radical trapping experiment was used to investigate the reactive oxygen radicals (ROS) in the catalytic process of CD nanozymes. The enzymatic parameters of CD nanozymes, including the Michaelis constant (Km) and the maximum initial reaction velocities (Vmax), were investigated. A good affinity for both OPD and H2O2 substrates was proven. Based on the FRET between CDs and OPD, a ratiometric fluorescence analysis of H2O2 was achieved and results ranged from 1 to 20 µM and 20 to 200 µM with a low limit of detection (LOD, 0.42 µM). The detection of H2O2 in milk was also achieved.


Asunto(s)
Carbono , Puntos Cuánticos , Peróxido de Hidrógeno/análisis , Fenilendiaminas , Peroxidasas , Colorantes Fluorescentes , Límite de Detección
13.
Nanomaterials (Basel) ; 12(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364585

RESUMEN

Sensitive detection of prostate-specific antigens (PSA) in serum is essential for the prevention and early treatment of prostate cancer. Simple and disposable electrochemical immunosensors are highly desirable for screening and mobile detection of PSAs in high-risk populations. Here, an electrochemical immunosensor was constructed based on amino-rich nanochannels array-modified patterned, inexpensive, and disposable indium tin oxide (ITO) electrodes, which can be employed for the sensitive detection of PSA. Using an amino-group-containing precursor, a vertically ordered mesoporous silica nanochannel film (VMSF) containing amino groups (NH2-VMSF) was rapidly grown on ITO. When NH2-VMSF contained template surfactant micelle (SM), the outer surface of NH2-VMSF was directionally modified by aldehyde groups, which enabled further covalent immobilization of the recognitive antibody to prepare the immuno-recognitive interface. Owing to the charge-based selective permeability, NH2-VMSF can electrostatically adsorb negatively charged redox probes in solution (Fe(CN)63-/4-). The electrochemical detection of PSA is realized based on the mechanism that the antigen-antibody complex can reduce the diffusion of redox probes in solution to the underlying electrode, leading to the decrease in electrochemical signal. The constructed immunosensor can achieve sensitive detection of PSA in the range from 10 pg/mL to 1 µg/mL with a limit of detection (LOD) of 8.1 pg/mL. Sensitive detection of PSA in human serum was also achieved. The proposed disposable immunosensor based on cheap electrode and nanochannel array is expected to provide a new idea for developing a universal immunosensing platform for sensitive detection of tumor markers.

14.
Front Chem ; 10: 940795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092672

RESUMEN

Ultrasensitive and selective determination of biomarkers of the bone metabolism in serum is crucial for early screening, timely treatment, and monitoring of the curative effect of osteoporosis, which is a silent disease with serious health threats. Immunoassay with a simple sensing interface and ultrahigh sensitivity is highly desirable. Herein, a simple electrochemical immunosensor is demonstrated based on gold nanoparticles (AuNPs) electrodeposited on chitosan-reduced graphene oxide (CS-G) composite modified electrode, which can achieve sensitive determination of the important biomarker of bone metabolism, bone gamma-carboxyglutamate protein (BGP). To overcome the agglomeration of graphene and introduce a biocompatible matrix with functional amino groups, CS-G is prepared and modified on the supporting glassy carbon electrode (GCE). Then, AuNPs are electrodeposited on CS-G through their interaction between amine groups of CS. The immobilized AuNPs provide numerous binding sites to immobilize anti-BGP antibodies (AbBGP). The specific recognition between BGP and AbBGP results in a reduction in the mass transfer of the electrochemical probe (Fe(CN)6 3-/4-) in solution, leading to a reduced electrochemical signal. Based on this mechanism, fast and ultrasensitive electrochemical detection of BGP is achieved when the concentration of BGP ranges from 100 ag ml-1 to 10 µg mL-1 with a limit of detection (LOD) of 20 ag ml-1 (S/N = 3). The determination of BGP in human serum is also realized with high reliability.

15.
Molecules ; 27(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36144631

RESUMEN

A facile and highly sensitive determination of prostate-specific antigen (PSA) is of great significance for the early diagnosis, monitoring and prognosis of prostate cancer. In this work, a disposable and label-free electrochemical immunosensing platform was demonstrated based on chitosan-graphene-modified indium tin oxide (ITO) electrode, which enables sensitive amperometric determination of PSA. Chitosan (CS) modified reduced graphene oxide (rGO) nanocomposite (CS-rGO) was easily synthesized by the chemical reduction of graphene oxide (GO) using CS as a dispersant and biofunctionalizing agent. When CS-rGO was modified on the patterned ITO, CS offered high biocompatibility and reactive groups for the immobilization of recognition antibodies and rGO acted as a transduction element and enhancer to improve the electronic conductivity and stability of the CS-rGO composite film. The affinity-based biosensing interface was constructed by covalent immobilization of a specific polyclonal anti-PSA antibody (Ab) on the amino-enriched electrode surface via a facile glutaraldehyde (GA) cross-linking method, which was followed by the use of bovine serum albumin to block the non-specific sites. The immunosensor allowed the detection of PSA in a wide range from 1 to 5 ng mL-1 with a low limit of detection of 0.8 pg mL-1. This sensor also exhibited high selectivity, reproducibility, and good storage stability. The application of the prepared immunosensor was successfully validated by measuring PSA in spiked human serum samples.


Asunto(s)
Técnicas Biosensibles , Quitosano , Grafito , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos , Glutaral , Humanos , Inmunoensayo/métodos , Límite de Detección , Masculino , Antígeno Prostático Específico , Reproducibilidad de los Resultados , Albúmina Sérica Bovina , Compuestos de Estaño
16.
Front Chem ; 10: 954748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991606

RESUMEN

Convenient, rapid and sensitive detection of p-nitrophenol (p-NP), one of the priority environmental pollutants, in environmental samples is of great significance. Electrochemical sensor with simple fabrication process, high sensitivity and selectivity, good antifouling, and regeneration performance is highly desirable. Herein, an electrochemical sensing platform is demonstrated based on the integration of vertically-ordered mesoporous silica-nanochannel film (VMSF) on electrochemical pre-activated glassy carbon electrode (p-GCE), which is able to realize ultrasensitive detection of p-NP in environmental samples. Electrochemical pre-activation of GCE is achieved through a simple and green electrochemical polarization process including anodic oxidation at high voltage and the following cathodic reduction at low voltage. The p-GCE possesses enhanced active area and introduced active sites, and enables stable binding of VMSF. VMSF is easily grown on p-GCE through the electrochemically assisted self-assembly (EASA) method within 10 s. Owing to the hydrogen bonding between silanol groups and p-NP, VMSF nanochannels display strong enrichment effect for the detection of p-NP. The developed VMSF/p-GCE sensor can achieve sensitive detection of p-NP ranging from 10 nM to 1 µM and from 1 to 30 µM with a limit of detection (LOD) of 9.4 nM. Considering the antifouling ability of VMSF, detection of p-NP in pond water is achieved.

17.
Front Chem ; 10: 872582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464210

RESUMEN

Fast, convenient, and highly sensitive detection of antibiotic is essential to avoid its overuse and the possible harm. Owing to enrichment effect and antifouling ability of ultrasmall nanochannels, the vertically ordered mesoporous silica nanochannel film (VMSF) has great potential in the development of the facile electrochemiluminescence (ECL) sensor for direct and sensitive analysis of antibiotics in complex samples. In this study, we demonstrated a flexible ECL sensor based on a cost-effective electrode covered with a VMSF for sensitive detection of clindamycin. Polyethylene terephthalate coated with indium tin oxide (PET-ITO) is applied as a flexible electrode to grow VMSF using the electrochemically assisted self-assembly (EASA) method. The negatively charged VMSF nanochannels exhibit significant enrichment toward the commonly used cationic ECL luminophores, tris(2,2-bipyridyl) dichlororuthenium (II) (Ru (bpy)3 2+). Using the enhanced ECL of Ru (bpy)3 2+ by clindamycin, the developed VMSF/PET-ITO sensor can sensitively detect clindamycin. The responses were linear in the concentration range of 10 nM-25 µM and in the concentration range of 25-70 µM. Owing to the nanoscale thickness of the VMSF and the high coupling stability with the electrode substrate, the developed flexible VMSF/PET-ITO sensor exhibits high signal stability during the continuous bending process. Considering high antifouling characteristic of the VMSF, direct analysis of clindamycin in a real biological sample, human serum, is realized.

18.
ACS Nano ; 16(4): 6916-6928, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35416655

RESUMEN

Spatially resolved tissue lipidomics is essential for accurate intraoperative and postoperative cancer diagnosis by revealing molecular information in the tumor microenvironment. Matrix-free laser desorption ionization mass spectrometry imaging (LDI-MSI) is an emerging attractive technology for label-free visualization of metabolites distributions in biological specimens. However, the development of LDI-MSI technology that could conveniently and authentically reveal molecular distribution on tissue samples is still a challenge. Herein, we present a tissue imprinting technology by retaining tissue lipids on 2D nanoflakes-capped silicon nanowires (SiNWs) for further mass spectrometry imaging and cancer diagnosis. The 2D nanoflakes were prepared by liquid exfoliation of molybdenum disulfide (MoS2) with nitrogen-doped graphene quantum dots (NGQDs), which serve as both intercalation agent and dispersant. The obtained NGQD@MoS2 nanoflakes were then decorated on the tip of vertical SiNWs, forming a hybrid NGQD@MoS2/SiNWs nanostructure, which display excellent lipid extraction ability, enhanced LDI efficiency and molecule imaging capability. The peak number and total ion intensity of different lipids species on animal lung tissues obtained by tissue imprinting LDI-MSI on NGQD@MoS2/SiNWs were ∼4-5 times greater than those on SiNWs substrate. As a proof-of-concept demonstration, the NGQD@MoS2/SiNWs nanostructure was further applied to visualize phospholipids on sliced non small cell lung cancer (NSCLC) tissue along with the adjacent normal tissue. On the basis of selected feature lipids and machine learning algorithm, a prediction model was constructed to discriminate NSCLC tissues from the adjacent normal tissues with an accuracy of 100% for the discovery cohort and 91.7% for the independent validation cohort.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanocables , Animales , Lipidómica , Silicio/química , Nanocables/química , Molibdeno , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Imagen Molecular , Lípidos/análisis , Microambiente Tumoral
19.
Talanta ; 238(Pt 1): 123027, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857346

RESUMEN

Direct, rapid and sensitive detection of physiologically-relevant active small molecules (ASMs) in complex biological samples is highly desirable. Herein, we present an electrochemical sensing platform by combining three-dimensional macroscopic graphene (3DG) and vertically-ordered mesoporous silica-nanochannel film (VMSF), which is able to directly detect ASMs in complex samples with high sensitivity and no need of tedious pretreatment. Free-standing and macroscopic 3DG serves as the supporting electrode and O2-plasma treatment is proposed as a simple and green approach to improve its hydrophilicity and electrochemical activity. The plasma-treated 3DG (pl-3DG) is suitable for stable modification of VMSF using electrochemically assisted self-assembly (EASA) method, conferring the electrode (VMSF/pl-3DG) with excellent anti-fouling properties. As the proof-of-concept demonstration, VMSF/pl-3DG sensor exhibits fast and ultrasensitive determination of uric acid (UA) with ultralow limit of detection (LOD, 23 nM) owing to high active surface, unhindered mass transfer, good electrical transfer of 3DG and signal amplification of VMSF nanochannel. Direct determination of UA in biological sample (serum) is also realized without the need of tedious pretreatment.


Asunto(s)
Grafito , Técnicas Electroquímicas , Electrodos , Dióxido de Silicio , Ácido Úrico
20.
Front Chem ; 9: 774486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869222

RESUMEN

Compared with natural enzymes, nanozymes based on carbonaceous nanomaterials are advantages due to high stability, good biocompatibility, and the possibility of multifunctionalities through materials engineering at an atomic level. Herein, we present a sensing platform using a nitrogen-doped graphene quantum dot (NGQD) as a highly efficient fluorescent peroxidase mimic, which enables a colorimetric/fluorescent dual-modality platform for detection of hydrogen peroxide (H2O2) and biomolecules (ascorbic acid-AA, acid phosphatase-ACP) with high sensitivity. NGQD is synthesized using a simple hydrothermal process, which has advantages of high production yield and potential for large-scale preparation. NGQD with uniform size (3.0 ± 0.6 nm) and a single-layer graphene structure exhibits bright and stable fluorescence. N-doping and ultrasmall size endow NGQD with high peroxidase-mimicking activity with an obviously reduced Michaelis-Menten constant (K m) in comparison with natural horseradish peroxidase. Taking advantages of both high nanozyme activity and unique fluorescence property of NGQD, a colorimetric and fluorescent dual-modality platform capable of detecting H2O2 and biomolecules (AA, ACP) with high sensitivity is developed as the proof-of-concept demonstration. Furthermore, the mechanisms underlying the nanozyme activity and biosensing are investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...