Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Sci ; 40(2): 285-290, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062249

RESUMEN

The rapid and accurate detection of miRNAs is of great significance for early diagnosis and treatment of cancer. Hence, a novel enzyme-free and label-free electrochemical biosensor based on bio-barcode amplification for detecting miRNAs was presented. Sandwich structures constructed of magnetic nanoparticles modified with DNA probes, gold nanoparticles with numerous barcoded DNA strands that hybridized with target miRNAs were fabricated as the amplifier. The released barcoded DNA strands then acted as the secondary targets and triggered the electrochemical sensor with a significant electrochemical response. A highly sensitive (detection limit of 0.24 fM) and selective electrochemical miRNA detection was realized, which has great potential for application in miRNA-related clinical diagnosis and biochemical research.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , MicroARNs/genética , Oro/química , Nanopartículas del Metal/química , ADN/química , Técnicas Electroquímicas , Límite de Detección
2.
Anal Sci ; 39(4): 565-571, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36680671

RESUMEN

Mercury ion (Hg2+) is the most widespread and highly toxic environmental pollutant, which exerts numerous adverse effects on environmental and human health. There is an urgent need to develop a convenient method for detecting Hg2+. Herein, a novel dual-mode sensor based on colorimetric and Tyndall effect of gold nanoparticles was developed for ultra-sensitive determination of Hg2+. In this strategy, a polyA-modified Au probe with high uniformity was assembled successfully. Both modes were based on Hg2+-induced aggregation of the probes. Hg2+ was reflected according to the color variations of solution and the Tyndall effect of Au reporter. With the aid of a laser pointer, the Tyndall mode demonstrated about 615-fold improvement on sensitivity compared with the colorimetry way. Taking advantages of low cost and convenient assembly of polyA-based Au probe and the combination of colorimetry and Tyndall effect, our strategy determined the Hg2+ with high sensitivity and wide range. By changing probes or nanoparticles, the proposed strategy is expected to be a universal platform for detecting other analytes in environmental and even biological samples. A novel dual-mode sensor based on colorimetric and tyndall effect of gold nanoparticles for ultra-sensitive determination of Hg2+ was exploited.

3.
Anal Methods ; 15(5): 626-630, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36645653

RESUMEN

Silver(I) ions (Ag+) are harmful to humans and can be bioaccumulated in organisms. Although numerous methods for Ag+ analysis have been established, new strategies are still in urgent need. Here, we propose a colorimetric sensor based on polyadenine (polyA)-mediated DNA-functionalized gold nanoparticles (AuNPs) for the specific measurement of Ag+ ions. In this strategy, a polyA-modified Au probe with high uniformity was assembled successfully. The method was based on Ag+-induced aggregation of the probe. Ag+ was reflected according to the color variations of solution. Taking advantage of the low cost and convenient assembly of the polyA-based Au probe, our strategy determined Ag+ with high sensitivity and wide range. In addition, by changing probes or nanoparticles, the proposed strategy is expected to be a universal platform for detecting other analytes in environmental and even biological samples.


Asunto(s)
Nanopartículas del Metal , Humanos , Oro , Colorimetría/métodos , Iones
4.
Analyst ; 147(22): 4980-4985, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36197295

RESUMEN

DNA methyltransferase (MTase) is an important regulatory enzyme in various biological processes. However, current methods for investigating MTase activity are still limited in terms of sensitivity and/or generality. Herein, we proposed a dual amplification fluorescence strategy for the ultrasensitive detection of DNA adenine methylation methyltransferase (Dam MTase) activity based on strand displacement amplification (SDA) coupled with rolling circle amplification (RCA). In this study, the hairpin probe could not be cleaved by Nt.AlwI nicking endonuclease (Nt.AlwI) in the presence of Dam MTase, and the subsequent SDA-RCA reaction was blocked, resulting in a weak fluorescence signal. Moreover, the blocking effect was more pronounced at a higher concentration of Dam MTase. This assay provides a very low detection limit (down to 0.0067 U ml-1), as well as good selectivity against other types of MTases (e.g., CpG methyltransferase (M.SssI MTase)). In addition, the analytical mode improves the generality and can be extended to the detection of other types of DNA MTases.


Asunto(s)
Técnicas Biosensibles , Metilasas de Modificación del ADN , Metilación de ADN , Espectrometría de Fluorescencia/métodos , Metiltransferasas/genética , ADN/genética , Técnicas Biosensibles/métodos
5.
J Pharm Biomed Anal ; 219: 114935, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35820248

RESUMEN

DNA methylation catalyzed by DNA adenine methylation methyltransferase (Dam MTase) is strongly connected with a variety of biological processes, hence, monitoring Dam MTase activity is of great importance. Here, we developed a rapid and sensitive fluorescence sensing strategy for the detection of Dam MTase activity based on methylation-blocked enzymatic recycling amplification. In this fluorescence sensing system, Dam MTase-induced methylation blocked the subsequent reactions. In contrast, in the absence of Dam MTase, the unmethylated probe initiated the cascade strand displacement amplification for significant signal amplification. Under optimized conditions, this method has a lower detection limit of 0.67 U/mL and a shorter assay time (90 min) compared with previously reported similar methodologies.


Asunto(s)
Técnicas Biosensibles , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica) , Técnicas Biosensibles/métodos , ADN , Metilación de ADN , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Espectrometría de Fluorescencia
6.
Materials (Basel) ; 14(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34443114

RESUMEN

The purpose of this study is to investigate the effects of laser spot size on the mechanical properties of AISI 420 stainless steel, fabricated by selective laser melting (SLM), process. Tensile specimens were built directly via the SLM process, using various laser spot diameters, namely 0.1, 0.2, 0.3, and 0.4 mm. The corresponding volumetric energy density (EV) is 80, 40, 26.7, and 20 J/mm3, respectively. Experimental results indicate that laser spot size is an important process parameter and has significant effects on the surface roughness, hardness, density, tensile strength, and microstructure of the SLM AISI 420 builds. A large laser spot with low volumetric energy density results in balling, un-overlapped defects, a large re-heated zone, and a large sub-grain size. As a result, SLM specimens fabricated by the largest laser spot diameter of 0.4 mm exhibit the roughest surface, lowest densification, and lowest ultimate tensile strength. To ensure complete melting of the powder and melt pool stability, EV of 80 J/mm3 proves to be a suitable laser energy density value for the given SLM processing and material system.

7.
Materials (Basel) ; 13(22)2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203109

RESUMEN

Mechanical properties and microstructure are investigated for a martensitic stainless steel (AISI 420) fabricated by selective laser melting (SLM) in three build directions. The tensile specimens built by SLM are classified into three groups. Group A is horizontally built in the thickness direction, Group B is horizontally built in the width direction, and Group C is vertically built in the length direction. The loading direction in tensile test is parallel to the build direction of Group C, but perpendicular to that of Groups A and B. Experimental results indicate build direction has significant effects on the residual stress, hardness, and tensile properties of SLM builds. Microstructural analyses indicate the as-fabricated SLM AISI 420 builds exhibit elongated cells and acicular structures which are composed of martensite and retained austenite phases growing along the build direction. Such anisotropy in the microstructure leads to anisotropic mechanical properties as Group C specimens (length direction) exhibit greater yield stress, ultimate tensile stress, and elongation than the specimens of Groups A (thickness direction) and B (width direction). The residual compressive stress in the gauge section also contributes to the superior tensile properties of Group C (length direction), as compared to Groups A (thickness direction) and B (width direction), which exhibit residual tensile stress in the gauge section.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA