Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622771

RESUMEN

Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.

2.
Nat Commun ; 15(1): 22, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167822

RESUMEN

Cell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis). These proteins enhance plant susceptibility to oomycete pathogens in a PeL enzymatic activity-dependent manner. However, LcPIP1, a plant immune regulator secreted by litchi, binds to PlPeL1/PlPeL1-like, and attenuates PlPeL1/PlPeL1-like induced plant susceptibility to Phytophthora capsici. LcPIP1 also induces cell death and various immune responses in Nicotiana benthamiana. Conserved in plants, LcPIP1 homologs bear a conserved "VDMASG" motif and exhibit immunity-inducing activity. Furthermore, SERK3 interacts with LcPIP1 and is required for LcPIP1-induced cell death. NbPIP1 participates in immune responses triggered by the PAMP protein INF1. In summary, our study reveals the dual roles of PlPeL1/PlPeL1-like in plant-pathogen interactions: enhancing pathogen virulence through PeL enzymatic activity while also being targeted by LcPIP1, thus enhancing plant immunity.


Asunto(s)
Litchi , Phytophthora , Litchi/metabolismo , Phytophthora/fisiología , Polisacárido Liasas/metabolismo , Proteínas/metabolismo , Inmunidad de la Planta , Muerte Celular , Enfermedades de las Plantas
3.
Microorganisms ; 12(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38258010

RESUMEN

Litchi is a fruit of significant commercial value; however, its quality and yield are hindered by downy blight disease caused by Peronophythora litchii. In this study, volatile organic compounds (VOCs) from Streptomyces abikoensis TJGA-19 were investigated for their antifungal effects and studied in vitro and in planta for the suppression of litchi downy blight disease in litchi leaves and fruits. The growth of P. litchii was inhibited by VOCs produced by TJGA-19 cultivated on autoclaved wheat seeds for durations of 10, 20, or 30 days. Volatiles from 20-day-old cultures were more active in inhibition effect against P. litchii than those from 10- or 30-day-old cultures. These volatiles inhibit the growth of mycelia, sporulation, and oospore production, without any significant effect on sporangia germination. Additionally, the VOCs were effective in suppressing disease severity in detached litchi leaf and fruit infection assays. With the increase in the weight of the wheat seed culture of S.abikoensis TJGA-19, the diameters of disease spots on leaves, as well as the incidence rate and disease indices on fruits, decreased significantly. Microscopic results from SEM and TEM investigations showed abnormal morphology of sporangia, mycelia, and sporangiophores, as well as organelle damage in P. litchii caused by VOCs of TJGA-19. Spectroscopic analysis revealed the identification of 22 VOCs produced by TJGA-19, among which the most dominant compound was 2-Methyliborneol. These findings indicated the significant role of TJGA-19 compounds in the control of litchi downy blight disease and in improving fruit quality.

4.
Plant Physiol ; 194(3): 1779-1793, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38039157

RESUMEN

During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.


Asunto(s)
Proteínas Portadoras , Esterasas , Litchi , Phytophthora , Fitomejoramiento , Transducción de Señal
5.
Plant Physiol ; 193(1): 756-774, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37232407

RESUMEN

Oomycete pathogens can secrete hundreds of effectors into plant cells to interfere with the plant immune system during infection. Here, we identified a Arg-X-Leu-Arg (RXLR) effector protein from the most destructive pathogen of litchi (Litchi chinensis Sonn.), Peronophythora litchii, and named it P. litchii avirulence homolog 202 (PlAvh202). PlAvh202 could suppress cell death triggered by infestin 1 or avirulence protein 3a/resistance protein 3a in Nicotiana benthamiana and was essential for P. litchii virulence. In addition, PlAvh202 suppressed plant immune responses and promoted the susceptibility of N. benthamiana to Phytophthora capsici. Further research revealed that PlAvh202 could suppress ethylene (ET) production by targeting and destabilizing plant S-adenosyl-L-methionine synthetase (SAMS), a key enzyme in the ET biosynthesis pathway, in a 26S proteasome-dependent manner without affecting its expression. Transient expression of LcSAMS3 induced ET production and enhanced plant resistance, whereas inhibition of ET biosynthesis promoted P. litchii infection, supporting that litchi SAMS (LcSAMS) and ET positively regulate litchi immunity toward P. litchii. Overall, these findings highlight that SAMS can be targeted by the oomycete RXLR effector to manipulate ET-mediated plant immunity.


Asunto(s)
Phytophthora infestans , Proteínas/metabolismo , Inmunidad de la Planta/genética , Virulencia , Etilenos/metabolismo , Enfermedades de las Plantas , Nicotiana/genética , Nicotiana/metabolismo
7.
Front Microbiol ; 13: 984672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160220

RESUMEN

Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.

8.
BMC Microbiol ; 22(1): 155, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35689202

RESUMEN

BACKGROUND: Organic mulch is an important management practice in agricultural production to improve soil quality, control crop pests and diseases and increase the biodiversity of soil microecosystem. However, the information about soil microbial diversity and composition in litchi plantation response to organic mulch and its attribution to litchi downy blight severity was limited. This study aimed to investigate the effect of organic mulch on litchi downy blight, and evaluate the biodiversity and antimicrobial potential of soil microbial community of litchi plantation soils under organic mulch. RESULTS: Organic mulch could significantly suppress the disease incidence in the litchi plantation, and with a reduction of 37.74% to 85.66%. As a result of high-throughput 16S rRNA and ITS rDNA gene illumine sequencing, significantly higher bacterial and fungal community diversity indexes were found in organic mulch soils, the relative abundance of norank f norank o Vicinamibacterales, norank f Vicinamibacteraceae, norank f Xanthobacteraceae, Unclassified c sordariomycetes, Aspergillus and Thermomyces were significant more than that in control soils. Isolation and analysis of antagonistic microorganism showed that 29 antagonistic bacteria strains and 37 antagonistic fungi strains were unique for mulching soils. CONCLUSIONS: Thus, we believe that organic mulch has a positive regulatory effect on the litchi downy blight and the soil microbial communities, and so, is more suitable for litchi plantation.


Asunto(s)
Litchi , Micobioma , Bacterias , Litchi/genética , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
9.
PLoS Pathog ; 18(5): e1010157, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35512028

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence, suggesting the involvement of milRNA biosynthesis in the Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly down-regulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR and Northern blot analysis. Compared to the wild-type, the deletion mutant of milR-87 was significantly reduced in virulence, while overexpression of milR-87 enhanced disease severity, confirming that milR-87 is crucial for Foc virulence in the infection process. We furthermore identified FOIG_15013 (a glycosyl hydrolase-coding gene) as the direct target of milR-87 based on the expression of FOIG_15013-GFP fusion protein. The FOIG_15013 deletion mutant displayed similar phenotypes as the overexpression of milR-87, with a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases.


Asunto(s)
Fusarium , MicroARNs , Musa , Expresión Génica , Hidrolasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Musa/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética
10.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269874

RESUMEN

C2H2 zinc finger is one of the most common motifs found in the transcription factors (TFs) in eukaryotes organisms, which have a broad range of functions, such as regulation of growth and development, stress tolerance and pathogenicity. Here, PlCZF1 was identified to encode a C2H2 zinc finger in the litchi downy blight pathogen Peronophythora litchii. PlCZF1 is conserved in P. litchii and Phytophthora species. In P. litchii, PlCZF1 is highly expressed in sexual developmental and early infection stages. We generated Δplczf1 mutants using the CRISPR/Cas9 method. Compared with the wild type, the Δplczf1 mutants showed no significant difference in vegetative growth and asexual reproduction, but were defective in oospore development and virulence. Further experiments revealed that the transcription of PlM90, PlLLP and three laccase encoding genes were down-regulated in the Δplczf1 mutant. Our results demonstrated that PlCZF1 is a vital regulator for sexual development and pathogenesis in P. litchii.


Asunto(s)
Litchi , Phytophthora , Litchi/genética , Enfermedades de las Plantas/genética , Virulencia/genética , Dedos de Zinc
11.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163762

RESUMEN

Autophagy is ubiquitously present in eukaryotes. During this process, intracellular proteins and some waste organelles are transported into lysosomes or vacuoles for degradation, which can be reused by the cell to guarantee normal cellular metabolism. However, the function of autophagy-related (ATG) proteins in oomycetes is rarely known. In this study, we identified an autophagy-related gene, PlATG6a, encoding a 514-amino-acid protein in Peronophythora litchii, which is the most destructive pathogen of litchi. The transcriptional level of PlATG6a was relatively higher in mycelium, sporangia, zoospores and cysts. We generated PlATG6a knockout mutants using CRISPR/Cas9 technology. The P. litchii Δplatg6a mutants were significantly impaired in autophagy and vegetative growth. We further found that the Δplatg6a mutants displayed decreased branches of sporangiophore, leading to impaired sporangium production. PlATG6a is also involved in resistance to oxidative and salt stresses, but not in sexual reproduction. The transcription of peroxidase-encoding genes was down-regulated in Δplatg6a mutants, which is likely responsible for hypersensitivity to oxidative stress. Compared with the wild-type strain, the Δplatg6a mutants showed reduced virulence when inoculated on the litchi leaves using mycelia plugs. Overall, these results suggest a critical role for PlATG6a in autophagy, vegetative growth, sporangium production, sporangiophore development, zoospore release, pathogenesis and tolerance to salt and oxidative stresses in P. litchii.


Asunto(s)
Beclina-1/genética , Litchi/crecimiento & desarrollo , Phytophthora/crecimiento & desarrollo , Regulación hacia Arriba , Autofagia , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Litchi/parasitología , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/patogenicidad , Estrés Oxidativo , Phytophthora/genética , Phytophthora/patogenicidad , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/parasitología , Reproducción Asexuada , Tolerancia a la Sal , Factores de Virulencia/genética
12.
Front Plant Sci ; 12: 783438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899811

RESUMEN

As an electron transport component, cytochrome b5 is an essential component of the Class II cytochrome P450 monooxygenation system and widely present in animals, plants, and fungi. However, the roles of Cyt-b5 domain proteins in pathogenic oomycetes remain unknown. Peronophythora litchii is an oomycete pathogen that causes litchi downy blight, the most destructive disease of litchi. In this study, we identified a gene, designated PlCB5L1, that encodes a Cyt-b5 domain protein in P. litchii, and characterized its function. PlCB5L1 is highly expressed in the zoospores, cysts, germinated cysts, and during early stages of infection. PlCB5L1 knockout mutants showed reduced growth rate and ß-sitosterol utilization. Importantly, we also found that PlCB5L1 is required for the full pathogenicity of P. litchii. Compared with the wild-type strain, the PlCB5L1 mutants exhibited significantly higher tolerance to SDS and sorbitol, but impaired tolerance to cell wall stress, osmotic stress, and oxidative stress. Further, the expression of genes involved in oxidative stress tolerance, including peroxidase, cytochrome P450, and laccase genes, were down-regulated in PlCB5L1 mutants under oxidative stress. This is the first report that a Cyt-b5 domain protein contributes to the development, stress response, and pathogenicity in plant pathogenic oomycetes.

13.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805371

RESUMEN

As an evolutionarily conserved pathway, mitogen-activated protein kinase (MAPK) cascades function as the key signal transducers that convey information by protein phosphorylation. Here we identified PlMAPK2 as one of 14 predicted MAPKs encoding genes in the plant pathogenic oomycete Peronophythora litchii. PlMAPK2 is conserved in P.litchii and Phytophthora species. We found that PlMAPK2 was up-regulated in sporangium, zoospore, cyst, cyst germination and early stage of infection. We generated PlMAPK2 knockout mutants using the CRISPR/Cas9 method. Compared with wild-type strain, the PlMAPK2 mutants showed no significant difference in vegetative growth, oospore production and sensitivity to various abiotic stresses. However, the sporangium release was severely impaired. We further found that the cleavage of the cytoplasm into uninucleate zoospores was disrupted in the PlMAPK2 mutants, and this developmental phenotype was accompanied by reduction in the transcription levels of PlMAD1 and PlMYB1 genes. Meanwhile, the PlMAPK2 mutants exhibited lower laccase activity and reduced virulence to lychee leaves. Overall, this study identified a MAPK that is critical for zoosporogenesis by regulating the sporangial cleavage and pathogenicity of P.litchii, likely by regulating laccase activity.


Asunto(s)
Litchi/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oomicetos/patogenicidad , Enfermedades de las Plantas , Litchi/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Virulencia
14.
Microorganisms ; 8(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297590

RESUMEN

In this study, we isolated an endophytic Burkholderia gladioli strain, named CGB10, from sugarcane leaves. B. gladioli CGB10 displayed strong inhibitory activity against filamentous growth of fungal pathogens, one of which is Sporisorium scitamineum that causes sugarcane smut, a major disease affecting the quality and production of sugarcane in tropical and subtropical regions. CGB10 could effectively suppress sugarcane smut under field conditions, without itself causing any obvious damage or disease, thus underscoring a great potential as a biocontrol agent (BCA) for the management of sugarcane smut. A toxoflavin biosynthesis and transport gene cluster potentially responsible for such antifungal activity was identified in the CGB10 genome. Additionally, a quorum-sensing gene cluster was identified too and compared with two close Burkholderia species, thus supporting an overall connection to the regulation of toxoflavin synthesis therein. Overall, this work describes the in vitro and field Sporisorium scitamineum biocontrol by a new B. gladioli strain, and reports genes and molecular mechanisms potentially involved.

15.
Plant Dis ; 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185520

RESUMEN

Anthracnose fruit rot of litchi (Litchi chinensis Sonn.), caused by Colletotrichum spp., has been mainly associated with the C. acutatum species complex and C. gloeosporioides species complex (Farr and Rossman 2020). In June 2010, isolates of the C. acutatum species complex were isolated together with the C. gloeosporioides species complex from anthracnose lesions on litchi fruits (cv. Nuomici) obtained from a litchi orchard in Shenzhen (N 22.36°, E 113.58°), China. The symptoms typically appeared as brown lesions up to 25 mm in diameter, causing total fruit rot and sometimes fruit cracking. Based on the number of isolates we collected, the C. acutatum species complex appears less frequently on infected fruit compared to the C. gloeosporioides species complex. Since only the C. gloeosporioides species complex has been reported in China (Qi 2000; Ann et al. 2004), we focused on the C. acutatum species complex in this study. Pure cultures of fungal isolates were obtained by single-spore isolation. The isolate GBLZ10CO-001 was used for morphological characterization, molecular and phylogenetic analysis, and pathogenicity testing. Colonies were cultured on potato dextrose agar (PDA) at 25 ℃ for 7 days, circular, raised, cottony, gray or pale orange, with reverse carmine, and 39.6 to 44.7 mm in diameter. Conidia were 13.5 to 19 × 4 to 6 µm (mean ± SD = 15.9 ± 1.1 × 5.2 ± 0.3 µm, n = 50) in size, hyaline, smooth-walled, aseptate, straight, fusiform to cylindrical with both ends acute. Appressoria were 5.5 to 13.5 × 4.5 to 7.5 µm (mean ± SD = 7.6 ± 1.6 × 6.0 ± 0.7 µm, n = 50) in size, subglobose to elliptical, sometimes clavate or irregular, smooth-walled, with entire edge, sometimes undulate, pale to medium brown. These morphological characteristics were consistent with the descriptions of several Colletotrichum species belonging to the C. acutatum species complex, including C. fioriniae (Shivas and Tan 2009; Damm et al. 2012). For molecular identification, genomic DNA was extracted and the ribosomal internal transcribed spacer (ITS), partial sequences of the ß-tubulin (TUB2), actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), and histone3 (HIS3) genes were amplified and sequenced using the primer pairs ITS4/ITS5, T1/Bt2b, ACT512F/ACT783R, GDF1/GDR1, CHS-79F/CHS-354R, and CYLH3F/CYLH3R, respectively (White et al. 1990; Damm et al. 2012). The resulting sequences were submitted to GenBank (ITS: MN527186, TUB2: MT740310, ACT: MN532321, GAPDH: MN532427, CHS-1: MT740311, HIS3: MT740312). BLAST searches showed 98.70%-100% identity to the sequences of the C. fioriniae ex-holotype culture CBS 128517. The phylogram reconstructed from the combined dataset using MrBayes 3.2.6 (Ronquist et al. 2012) showed that isolate GBLZ10CO-001 clustered with C. fioriniae with high posterior probability. Koch's postulates were performed in the field to confirm pathogenicity. Isolate GBLZ10CO-001 was grown on PDA (25 ℃ for 7 days) to produce conidia. In June 2014, litchi fruits (cv. Nuomici) were sprayed with conidial suspensions (106 conidia/ml), with sterile water as blank controls, and each treatment inoculated at least 15 fruits. Inoculated fruits were covered by an adhesive-bonded fabric bag until the trial ended. After 31 days, typical symptoms were observed, while control fruits remained asymptomatic. The fungus was re-isolated from diseased fruits and identified as C. fioriniae according to the methods described above. To our knowledge, this is the first report of anthracnose fruit rot on litchi caused by C. fioriniae, one species of the C. acutatum species complex, in China. For the difficulty in distinguishing anthracnose caused by C. fioriniae from the C. gloeosporioides species complex just by the symptoms, and mixed infection usually occurring in the field, further investigations are required to reliably assess the potential threat posed by C. fioriniae for litchi production in China.

16.
mSphere ; 5(3)2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493721

RESUMEN

Basic leucine zipper (bZIP) transcription factors are widespread in eukaryotes, including plants, animals, fungi, and oomycetes. However, the functions of bZIPs in oomycetes are rarely known. In this study, we identified a bZIP protein possessing a special bZIP-PAS structure in Peronophythora litchii, named PlBZP32 We found that PlBZP32 is upregulated in zoospores, in cysts, and during invasive hyphal growth. We studied the functions of PlBZP32 using the RNAi technique to suppress the expression of this gene. PlBZP32-silenced mutants were more sensitive to oxidative stress, showed a lower cyst germination rate, and produced more sporangia than the wild-type strain SHS3. The PlBZP32-silenced mutants were also less invasive on the host plant. Furthermore, we analyzed the activities of extracellular peroxidases and laccases and found that silencing PlBZP32 decreased the activities of P. litchii peroxidase and laccase. To our knowledge, this is the first report that the functions of a bZIP-PAS protein are associated with oxidative stress, asexual development, and pathogenicity in oomycetes.IMPORTANCE In this study, we utilized the RNAi technique to investigate the functions of PlBZP32, which possesses a basic leucine zipper (bZIP)-PAS structure, and provided insights into the contributions of bZIP transcription factors to oxidative stress, the production of sporangia, the germination of cysts, and the pathogenicity of Peronophythora litchii This study also revealed the role of PlBZP32 in regulating the enzymatic activities of extracellular peroxidases and laccases in the plant-pathogenic oomycete.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Litchi/microbiología , Estrés Oxidativo/genética , Phytophthora/genética , Phytophthora/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Hojas de la Planta/microbiología , Transcripción Genética , Virulencia
17.
Mol Plant Pathol ; 21(3): 415-428, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31912634

RESUMEN

Litchi downy blight, caused by the phytopathogenic oomycete Peronophythora litchii, results in tremendous economic loss in litchi production every year. To successfully colonize the host cell, Phytophthora species secret hundreds of RXLR effectors that interfere with plant immunity and facilitate the infection process. Previous work has already predicted 245 candidate RXLR effector-encoding genes in P. litchii, 212 of which have been cloned and tested for plant cell death-inducing activity in this study. We found three such RXLR effectors could trigger plant cell death through transient expression in Nicotiana benthamiana. Further experiments demonstrated that PlAvh142 could induce cell death and immune responses in several plants. We also found that PlAvh142 localized in both the cytoplasm and nucleus of plant cells. The cytoplasmic localization was critical for its cell death-inducing activity. Moreover, deletion either of the two internal repeats in PlAvh142 abolished the cell death-inducing activity. Virus-induced gene silencing assays showed that cell death triggered by PlAvh142 was dependent on the plant transduction components RAR1 (require for Mla12 resistance), SGT1 (suppressor of the G2 allele of skp1) and HSP90 (heat shock protein 90). Finally, knockout of PlAvh142 resulted in significantly attenuated P. litchii virulence on litchi plants, whereas the PlAvh142-overexpressed mutants were more aggressive. These data indicated that PlAvh142 could be recognized in plant cytoplasm and is an important virulence RXLR effector of P. litchii.


Asunto(s)
Phytophthora/patogenicidad , Enfermedades de las Plantas/microbiología , Muerte Celular/genética , Citoplasma , Frutas/microbiología , Phytophthora/genética , Phytophthora/metabolismo , Nicotiana/microbiología , Virulencia
18.
Front Microbiol ; 10: 2115, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552011

RESUMEN

The sugarcane smut fungus Sporisorium scitamineum is bipolar and produces sporidia of two different mating types. During infection, haploid cells of opposite mating types can fuse to form dikaryotic hyphae that can colonize plant tissue. Mating and filamentation are therefore essential for S. scitamineum pathogenesis. In this study, we obtained one T-DNA insertion mutant disrupted in the gene encoding the pheromone response factor (Prf1), hereinafter named SsPRF1, of S. scitamineum, via Agrobacterium tumefaciens-mediated transformation (ATMT) mutagenesis. Targeted deletion of SsPRF1 resulted in mutants with phenotypes similar to the T-DNA insertion mutant, including failure to mate with a compatible wild-type partner strain and being non-pathogenic on its host sugarcane. qRT-PCR analyses showed that SsPRF1 was essential for the transcription of pheromone-responsive mating type genes of the a1 locus. These results show that SsPRF1 is involved in mating and pathogenicity and plays a key role in pheromone signaling and filamentous growth in S. scitamineum.

19.
Data Brief ; 25: 104345, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31485468

RESUMEN

This data article provides supporting information to a related research article "Identification of volatile organic compounds for the biocontrol of postharvest litchi fruit pathogen Peronophythora litchii" (Zheng et al., 2019) [1]. The litchi downy blight (LDB) caused by Peronophythora litchii is a major postharvest disease that can severely damage litchi trees and harvested litchi fruit. This data article describes the analysis of volatile compounds (VOCs) in three bacterial biological control agents (BCAs) of LDB (Bacillus amyloliquefaciens PP19, Bacillus pumilus PI26, and Exiguobacterium acetylicum SI17) via gas chromatography/mass spectrometry (GC-MS). Volatile compounds produced by the three BCAs were captured at five culture time of 24, 36, 48, 60 and 72 h by a solid-phase micro extraction method. The chemical compositions were identified and their retention times as well as relative peak areas were analyzed. Compounds commonly produced at more than one time points were then subjected to in vitro (on petri dish) and in vivo (litchi fruit and leaves) evaluations for their antagonistic activities against the pathogen Peronophythora litchii.

20.
Food Chem ; 286: 226-233, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30827600

RESUMEN

Gray mold caused by Botrytis cinerea is a major postharvest disease of table grapes that leads to enormous economic losses during storage and transportation. The objective of this study was to evaluate the effectiveness of fulvic acid on controlling gray mold of table grapes and explore its mechanism of action. The results showed that fulvic acid application significantly reduced downy blight severity in table grapes without exhibiting any antifungal activity in vitro. Fulvic acid induced phenylpropanoid metabolism, as evidenced by accumulation of phenolic compounds and flavonoids, higher activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL), up-regulation of genes related to phenylpropanoid biosynthesis (PAL, C4H, 4CL, STS, ROMT and CHS). Our results suggested that fulvic acid induces resistance to B. cinerea mainly through the activation of phenylpropanoid pathway and can be used as a new activator of plant defense responses to control postharvest gray mold in table grapes.


Asunto(s)
Benzopiranos/farmacología , Botrytis/patogenicidad , Frutas/microbiología , Vitis/metabolismo , Vitis/microbiología , Botrytis/efectos de los fármacos , Coenzima A Ligasas/metabolismo , Resistencia a la Enfermedad , Flavonoides/metabolismo , Microbiología de Alimentos , Frutas/efectos de los fármacos , Fungicidas Industriales/farmacología , Fenilanina Amoníaco-Liasa/metabolismo , Fenilpropionatos/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Transcinamato 4-Monooxigenasa/metabolismo , Vitis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...