Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Diabetes Complications ; 37(2): 108383, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610321

RESUMEN

Deoxysphingolipids (1-deoxySLs) are neurotoxic sphingolipids associated with obesity and diabetic neuropathy (DN) and have been linked to severity of functional peripheral neuropathies. While l-serine supplementation can reduce 1-deoxySL accumulation and improve insulin sensitivity and sensory nerve velocity, long-term outcomes have not yet been examined. To assess this, we treated 2 month old db/db mice, a model of DN, with 5-20 % oral l-serine for 6 months and longitudinally quantified the extent of functional neuropathy progression. We examined putative biomarkers of neuropathy in blood and tissue and quantified levels of small fiber neuropathy, looking for associations between lowered 1-deoxySL and phenotypes. Toxic 1-deoxySLs were suppressed long-term in plasma and various tissue including the sciatic nerve, which is particularly targeted in DN. Functional neuropathy and sensory modalities were significantly improved in the treatment group well into advanced stages of disease. However, structural assessments revealed prominent axonal degeneration, apoptosis and Schwann cell pathology, suggesting that neuropathy was ongoing. Hyperglycemia and dyslipidemia persisted during our study, and high levels of glutathione were seen in the spinal cord. Our results demonstrate that despite significant functional improvements, l-serine does not prevent chronic degenerative changes specifically at the structural level, pointing to other processes such as oxidative damage and hyperglycemia, that persist despite 1-deoxySL reduction.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Hiperglucemia , Ratones , Animales , Serina/uso terapéutico , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/prevención & control , Esfingolípidos , Suplementos Dietéticos
2.
Nat Methods ; 15(6): 469, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29786093

RESUMEN

In the version of this Brief Communication originally published online, ref. 21 included details for a conference paper (Pegard, N. C. et al. Paper presented at Novel Techniques in Microscopy: Optics in the Life Sciences, Vancouver, BC, Canada, 12-15 April 2015). The correct reference is the following: Pégard, N. C. et al. Optica 3, 517-524 (2016). This error has been corrected in the print, HTML and PDF versions of the paper.

3.
Nat Methods ; 15(6): 429-432, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29736000

RESUMEN

Thus far, optical recording of neuronal activity in freely behaving animals has been limited to a thin axial range. We present a head-mounted miniaturized light-field microscope (MiniLFM) capable of capturing neuronal network activity within a volume of 700 × 600 × 360 µm3 at 16 Hz in the hippocampus of freely moving mice. We demonstrate that neurons separated by as little as ~15 µm and at depths up to 360 µm can be discriminated.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Miniaturización/instrumentación , Neuronas/fisiología , Animales , Microscopía Intravital/instrumentación , Microscopía Intravital/métodos , Ratones , Imagen Óptica/instrumentación , Imagen Óptica/métodos
4.
Acta Neuropathol Commun ; 5(1): 61, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28807028

RESUMEN

Spatiotemporal tau pathology progression is regarded as highly stereotyped within each type of degenerative condition. For instance, AD has a progression of tau pathology consistently beginning in the entorhinal cortex, the locus coeruleus, and other nearby noradrenergic brainstem nuclei, before spreading to the rest of the limbic system as well as the cingulate and retrosplenial cortices. Proposed explanations for the consistent spatial patterns of tau pathology progression, as well as for why certain regions are selectively vulnerable to exhibiting pathology over the course of disease generally focus on transsynaptic spread proceeding via the brain's anatomic connectivity network in a cell-independent manner or on cell-intrinsic properties that might render some cell populations or regions uniquely vulnerable. We test connectivity based explanations of spatiotemporal tau pathology progression and regional vulnerability against cell-intrinsic explanation, using regional gene expression profiles as a proxy. We find that across both exogenously seeded and non-seeded tauopathic mouse models, the connectivity network provides a better explanation than regional gene expression profiles, even when such profiles are limited to specific sets of tau risk-related genes only. Our results suggest that, regardless of the location of pathology initiation, tau pathology progression is well characterized by a model positing entirely cell-type and molecular environment independent transsynaptic spread via the mouse brain's connectivity network. These results further suggest that regional vulnerability to tau pathology is mainly governed by connectivity with regions already exhibiting pathology, rather than by cell-intrinsic factors.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Modelos Neurológicos , Tauopatías/patología , Tauopatías/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Conectoma , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Humanos , Modelos Lineales , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Genéticos , Análisis Multivariante , Mutación , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Transcriptoma , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...