Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874204

RESUMEN

Deep sowing is a traditional method for drought resistance in maize production, and mesocotyl elongation is strongly associated with the ability of maize to germinate from deep soil. However, little is known about the functional genes and mechanisms regulating maize mesocotyl elongation. In the present study, we identified a plant-specific SIMILAR TO RCD-ONE (SRO) protein family member, ZmSRO1e, involved in maize mesocotyl elongation. The expression of ZmSRO1e is strongly inhibited upon transfer from dark to white light. The loss-of-function zmsro1e mutant exhibited a dramatically shorter mesocotyl than the wild-type in both constant light and darkness, while overexpression of ZmSRO1e significantly promoted mesocotyl elongation, indicating that ZmSRO1e positively regulates mesocotyl elongation. We showed that ZmSRO1e physically interacted with ZmbZIP61, an ortholog of Arabidopsis ELONGATED HYPOCOTYL 5 (HY5) and showed a function similar to that of HY5 in regulating photomorphogenesis. We found that ZmSRO1e repressed the transcriptional activity of ZmbZIP61 toward target genes involved in the regulation of cell expansion, such as ZmEXPB4 and ZmEXPB6, by interfering with the binding of ZmbZIP61 to the promoters of target genes. Our results provide a new understanding of the mechanism by which SRO regulates photomorphogenesis and highlight its potential application in deep sowing-resistant breeding.

2.
Nat Genet ; 56(6): 1257-1269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38802564

RESUMEN

Na+ exclusion from above-ground tissues via the Na+-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium. A 47-bp insertion in the first exon of TaSPL6-D resulted in a truncated peptide, TaSPL6-DIn, disrupting TaHKT1;5-D repression exhibited by TaSPL6-DDel. Overexpressing TaSPL6-DDel, but not TaSPL6-DIn, led to inhibited TaHKT1;5-D expression and increased salt sensitivity. Knockout of TaSPL6-DDel in two wheat genotypes enhanced salinity tolerance, which was attenuated by a further TaHKT1;5-D knockdown. Spike development was preserved in Taspl6-dd mutants but not in Taspl6-aabbdd mutants. TaSPL6-DIn was mainly present in landraces, and molecular-assisted introduction of TaSPL6-DIn from a landrace into a leading wheat cultivar successfully improved yield on saline soils. The SPL6-HKT1;5 module offers a target for the molecular breeding of salt-tolerant crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tolerancia a la Sal , Triticum , Triticum/genética , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Proteínas de Transporte de Catión/genética , Estudio de Asociación del Genoma Completo , Oryza/genética , Simportadores/genética , Simportadores/metabolismo , Pan , Plantas Modificadas Genéticamente , Brachypodium/genética , Salinidad
3.
Plant Biotechnol J ; 22(7): 1989-2006, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38412139

RESUMEN

Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.


Asunto(s)
Brasinoesteroides , Grano Comestible , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Azúcares/metabolismo , Transducción de Señal/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Estudio de Asociación del Genoma Completo
4.
J Integr Plant Biol ; 66(1): 36-53, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38108123

RESUMEN

Dormancy is an adaptive trait which prevents seeds from germinating under unfavorable environmental conditions. Seeds with weak dormancy undergo pre-harvest sprouting (PHS) which decreases grain yield and quality. Understanding the genetic mechanisms that regulate seed dormancy and resistance to PHS is crucial for ensuring global food security. In this study, we illustrated the function and molecular mechanism of TaSRO1 in the regulation of seed dormancy and PHS resistance by suppressing TaVP1. The tasro1 mutants exhibited strong seed dormancy and enhanced resistance to PHS, whereas the mutants of tavp1 displayed weak dormancy. Genetic evidence has shown that TaVP1 is epistatic to TaSRO1. Biochemical evidence has shown that TaSRO1 interacts with TaVP1 and represses the transcriptional activation of the PHS resistance genes TaPHS1 and TaSdr. Furthermore, TaSRO1 undermines the synergistic activation of TaVP1 and TaABI5 in PHS resistance genes. Finally, we highlight the great potential of tasro1 alleles for breeding elite wheat cultivars that are resistant to PHS.


Asunto(s)
Latencia en las Plantas , Triticum , Latencia en las Plantas/genética , Triticum/genética , Germinación/genética , Fitomejoramiento , Fenotipo
5.
J Integr Plant Biol ; 66(2): 169-171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38146667

RESUMEN

Overexpression of the zinc finger gene TaCHP stably enhanced wheat yield in saline-alkaline conditions in a multi-year, three-site field trial, and the genetic variations in its promoter contribute to saline-alkaline tolerance of wheat accessions. TaCHP and its tolerant haplotype have great potential for molecular breeding of stress-tolerant wheat.


Asunto(s)
Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/genética , Haplotipos
6.
Nat Commun ; 14(1): 1200, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864053

RESUMEN

Drought drastically restricts wheat production, so to dissect allelic variations of drought tolerant genes without imposing trade-offs between tolerance and yield is essential to cope with the circumstance. Here, we identify a drought tolerant WD40 protein encoding gene TaWD40-4B.1 of wheat via the genome-wide association study. The full-length allele TaWD40-4B.1C but not the truncated allele TaWD40-4B.1T possessing a nonsense nucleotide variation enhances drought tolerance and grain yield of wheat under drought. TaWD40-4B.1C interacts with canonical catalases, promotes their oligomerization and activities, and reduces H2O2 levels under drought. The knock-down of catalase genes erases the role of TaWD40-4B.1C in drought tolerance. TaWD40-4B.1C proportion in wheat accessions is negatively correlative with the annual rainfall, suggesting this allele may be selected during wheat breeding. The introgression of TaWD40-4B.1C enhances drought tolerance of the cultivar harboring TaWD40-4B.1T. Therefore, TaWD40-4B.1C could be useful for molecular breeding of drought tolerant wheat.


Asunto(s)
Resistencia a la Sequía , Triticum , Alelos , Catalasa/genética , Estudio de Asociación del Genoma Completo , Peróxido de Hidrógeno , Fitomejoramiento , Triticum/genética , Proteínas de Plantas/genética
7.
Front Plant Sci ; 14: 1152375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998677

RESUMEN

Efficient antioxidant enzymatic system contributes to salt tolerance of plants via avoiding ROS over-accumulation. Peroxiredoxins are crucial components of the reactive oxygen species (ROS) scavenging machinery in plant cells, but whether they offer salt tolerance with potential for germplasm improvement has not been well addressed in wheat. In this work, we confirmed the role of a wheat 2-Cys peroxiredoxin gene TaBAS1 that was identified through the proteomic analysis. TaBAS1 overexpression enhanced the salt tolerance of wheat at both germination and seedling stages. TaBAS1 overexpression enhanced the tolerance to oxidative stress, promoted the activities of ROS scavenging enzymes, and reduced ROS accumulation under salt stress. TaBAS1 overexpression promoted the activity of ROS production associated NADPH oxidase, and the inhibition of NADPH oxidase activity abolished the role of TaBAS1 in salt and oxidative tolerance. Moreover, the inhibition of NADPH-thioredoxin reductase C activity erased the performance of TaBAS1 in the tolerance to salt and oxidative stress. The ectopic expression of TaBAS1 in Arabidopsis exhibited the same performance, showing the conserved role of 2-Cys peroxiredoxins in salt tolerance in plants. TaBAS1 overexpression enhanced the grain yield of wheat under salt stress but not the control condition, not imposing the trade-offs between yield and tolerance. Thus, TaBAS1 could be used for molecular breeding of wheat with superior salt tolerance.

8.
Theor Appl Genet ; 136(1): 20, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36683081

RESUMEN

KEY MESSAGE: Fifteen and eleven loci, with most loci being novel, were identified to associate with seedling and adult resistances, respectively, to the durum-specific races of leaf rust pathogen in cultivated emmer. Leaf rust, caused by Puccinia triticina (Pt), constantly threatens durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum) production worldwide. A Pt race BBBQD detected in California in 2009 poses a potential threat to durum production in North America because resistance source to this race is rare in durum germplasm. To find new resistance sources, we assessed a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for seedling resistance to BBBQD and for adult resistance to a mixture of durum-specific races BBBQJ, CCMSS, and MCDSS in the field, and genotyped the panel using genotype-by-sequencing (GBS) and the 9 K SNP (Single Nucleotide Polymorphism) Infinium array. The results showed 24 and nine accessions consistently exhibited seedling and adult resistance, respectively, with two accessions providing resistance at both stages. We performed genome-wide association studies using 46,383 GBS and 4,331 9 K SNP markers and identified 15 quantitative trait loci (QTL) for seedling resistance located mostly on chromosomes 2B and 6B, and 11 QTL for adult resistance on 2B, 3B and 6A. Of these QTL, one might be associated with leaf rust resistance (Lr) gene Lr53, and two with the QTL previously reported in durum or hexaploid wheat. The remaining QTL are potentially associated with new Lr genes. Further linkage analysis and gene cloning are necessary to identify the causal genes underlying these QTL. The emmer accessions with high levels of resistance will be useful for developing mapping populations and adapted durum germplasm and varieties with resistance to the durum-specific races.


Asunto(s)
Basidiomycota , Triticum , Mapeo Cromosómico , Triticum/genética , Estudio de Asociación del Genoma Completo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Plantones/genética
9.
Mol Plant ; 16(3): 571-587, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36681864

RESUMEN

Alkali stress is a major constraint for crop production in many regions of saline-alkali land. However, little is known about the mechanisms through which wheat responds to alkali stress. In this study, we identified a calcium ion-binding protein from wheat, TaCCD1, which is critical for regulating the plasma membrane (PM) H+-ATPase-mediated alkali stress response. PM H+-ATPase activity is closely related to alkali tolerance in the wheat variety Shanrong 4 (SR4). We found that two D-clade type 2C protein phosphatases, TaPP2C.D1 and TaPP2C.D8 (TaPP2C.D1/8), negatively modulate alkali stress tolerance by dephosphorylating the penultimate threonine residue (Thr926) of TaHA2 and thereby inhibiting PM H+-ATPase activity. Alkali stress induces the expression of TaCCD1 in SR4, and TaCCD1 interacts with TaSAUR215, an early auxin-responsive protein. These responses are both dependent on calcium signaling triggered by alkali stress. TaCCD1 enhances the inhibitory effect of TaSAUR215 on TaPP2C.D1/8 activity, thereby promoting the activity of the PM H+-ATPase TaHA2 and alkali stress tolerance in wheat. Functional and genetic analyses verified the effects of these genes in response to alkali stress, indicating that TaPP2C.D1/8 function downstream of TaSAUR215 and TaCCD1. Collectively, this study uncovers a new signaling pathway that regulates wheat responses to alkali stress, in which Ca2+-dependent TaCCD1 cooperates with TaSAUR215 to enhance PM H+-ATPase activity and alkali stress tolerance by inhibiting TaPP2C.D1/8-mediated dephosphorylation of PM H+-ATPase TaHA2 in wheat.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fosfoproteínas Fosfatasas/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Triticum/genética , Triticum/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
10.
Gene ; 855: 147103, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513191

RESUMEN

B-GATA transcription factors with the LLM domain (LLM-domain B-GATAs) play important roles in developmental processes and environmental responses in flowering plants. Their characterization can therefore provide insights into the structural and functional evolution of functional gene families. Phylogenetic and sequence analysis suggests that LLM-domain B-GATAs evolved from ancestral GATA transcription factors before the divergence of chlorophyte algae and Streptophyta. We compared the function of PpGATA1, a LLM-domain B-GATA gene in moss Physcomitrium patens, with Arabidopsis thaliana counterparts and showed that, in P. patens, PpGATA1 controls growth and greening in haploid gametophytes, while in transgenic Arabidopsis it affects germination, leaf development, flowering time, greening and light responses in diploid sporophytes. These PpGATA1 functions are similar to those of Arabidopsis counterparts, AtGNC, AtGNL and AtGATA17. PpGATA1 was able to complement the role of GNC and GNL in a gnc gnl double mutant, and the LLM domains of PpGATA1 and GNC behaved similarly. The functions of LLM-domain B-GATAs regulating hypocotyl elongation and cotyledon epinasty in flowering plants pre-exist before the divergence of mosses and the lineage leading to flowering plants. This study sheds light on adaption of PpGATA1 and its homologs to new developmental designs during the evolution.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Briófitas , Bryopsida , Factores de Transcripción GATA/genética , Proteínas de Arabidopsis/genética , Filogenia , Briófitas/genética , Bryopsida/genética
11.
Front Genet ; 13: 979902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313462

RESUMEN

The diploidization of polyploid genomes is accompanied by genomic variation, including synonymous nucleotide substitutions that may lead to synonymous codon usage bias (SCUB). SCUB can mirror the evolutionary specialization of plants, but its effect on the formation of polyploidies is not well documented. We explored this issue here with hexaploid wheat and its progenitors. Synonymous codons (SCs) ending in either cytosine (NNC) or guanidine (NNG) were more frequent than those ending in either adenosine (NNA) or thymine (NNT), and the preference for NNC/G codons followed the increase in genome ploidy. The ratios between NNC/G and NNA/T codons gradually decreased in genes with more introns, and the difference in these ratios between wheat and its progenitors diminished with increasing ploidy. SCUB frequencies were heterogeneous among exons, and the bias preferred to NNA/T in more internal exons, especially for genes with more exons; while the preference did not appear to associate with ploidy. The SCUB alteration of the progenitors was different during the formation of hexaploid wheat, so that SCUB was the homogeneous among A, B and D subgenomes. DNA methylation-mediated conversion from cytosine to thymine weakened following the increase of genome ploidy, coinciding with the stronger bias for NNC/G SCs in the genome as a function of ploidy, suggesting that SCUB contribute to the epigenetic variation in hexaploid wheat. The patterns in SCUB mirrored the formation of hexaploid wheat, which provides new insight into genome shock-induced genetic variation during polyploidization. SCs representing non-neutral synonymous mutations can be used for genetic dissection and improvement of agricultural traits of wheat and other polyploidies.

12.
Sci China Life Sci ; 65(9): 1718-1775, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36018491

RESUMEN

Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.


Asunto(s)
Fitomejoramiento , Triticum , Genoma de Planta/genética , Genómica , Fenotipo , Sitios de Carácter Cuantitativo/genética , Triticum/genética
13.
New Phytol ; 236(2): 495-511, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751377

RESUMEN

Initially discovered in yeast, mitochondrial retrograde signalling has long been recognised as an essential in the perception of stress by eukaryotes. However, how to maintain the optimal amplitude and duration of its activation under natural stress conditions remains elusive in plants. Here, we show that TaSRO1, a major contributor to the agronomic performance of bread wheat plants exposed to salinity stress, interacted with a transmembrane domain-containing NAC transcription factor TaSIP1, which could translocate from the endoplasmic reticulum (ER) into the nucleus and activate some mitochondrial dysfunction stimulon (MDS) genes. Overexpression of TaSIP1 and TaSIP1-∆C (a form lacking the transmembrane domain) in wheat both compromised the plants' tolerance of salinity stress, highlighting the importance of precise regulation of this signal cascade during salinity stress. The interaction of TaSRO1/TaSIP1, in the cytoplasm, arrested more TaSIP1 on the membrane of ER, and in the nucleus, attenuated the trans-activation activity of TaSIP1, therefore reducing the TaSIP1-mediated activation of MDS genes. Moreover, the overexpression of TaSRO1 rescued the inferior phenotype induced by TaSIP1 overexpression. Our study provides an orchestrating mechanism executed by the TaSRO1-TaSIP1 module that balances the growth and stress response via fine tuning the level of mitochondria retrograde signalling.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Salinidad , Tolerancia a la Sal/genética , Factores de Transcripción/metabolismo , Triticum/metabolismo
14.
J Exp Bot ; 73(16): 5698-5714, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35595260

RESUMEN

Saline-alkali soil is a major environmental problem affecting crop productivity. One of the most effective approaches to combat it is to breed stress-tolerant plants through genetic engineering. Shanrong No. 4 (SR4) is an alkaline-tolerant cultivar of bread wheat (Triticum aestivum) derived from asymmetric somatic hybridization between the common wheat cultivar Jinan 177 (JN177) and tall wheatgrass. In this study, we aimed to explore the structure and function of alkalinity stress-responsive long non-coding RNAs (lncRNAs) in wheat. Sequencing was employed to identify the lncRNAs associated with stress tolerance and their corresponding targets. Approximately 19 000 novel lncRNA sequences were detected in SR4 and JN177. Upon exposure to alkaline stress, SR4 differentially expressed 5691 lncRNAs, whilst JN177 differentially expressed 5932. We selected five of them (L0760, L6247, L0208, L2098, and L3065) and generated seedlings of transiently knocked down strains using the virus-induced gene-silencing method. Knockdown of L0760 and L2098 caused the plants to exhibit sensitivity to alkaline stress, whereas knockdown of L6247, L0208, and L3065 increased the ability of plants to tolerate alkaline stress. We constructed lncRNA-miRNA-target-mRNA networks and alkali-response-related lncRNA-target-mRNA association networks to analyse the functions of lncRNAs. Collectively, our results demonstrate that lncRNAs may perform different roles under alkaline stress conditions.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Álcalis , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , Fitomejoramiento , ARN Largo no Codificante/genética , ARN Mensajero/genética , Triticum/genética
15.
Sci Total Environ ; 835: 155467, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489489

RESUMEN

The mutually beneficial relationship between plants and their root microbiota is essential for plants to adapt to unfavorable environments. However, the molecular mechanism of wheat regulating the structure of root microbiome and the influence of distant hybridization on this process are poorly understood. In this study, we systematically compared the root transcriptome and microbiome between a saline-alkali tolerant wheat introgression line SR4 (derived from somatic hybridization between wheat and tall wheatgrass) and its parent wheat variety JN177. The results indicated that root microorganisms were key factor maintaining better homeostasis of the sodium and potassium ion contents in SR4 than in JN177 under saline-alkali stress. Through systematic comparisons, we identified SR4-specific root bacterial and fungal taxa under saline-alkali stress. Through a weighted gene correlation network analysis (WGCNA) combining microbiome and transcriptome data, key functional genes and pathways, which were strongly related to root bacteria and fungi with differential abundance between JN177 and SR4, were identified. These results suggest that somatic hybridization has altered the key genes regulating root microbiome in wheat, further improving the saline-alkali tolerance of wheat introgression line. These findings provide the key bacterial and fungal taxa and functional target genes for wheat root microbiome engineering under saline-alkali stress.


Asunto(s)
Microbiota , Triticum , Álcalis , Bacterias , Hibridación Genética , Microbiota/fisiología , Raíces de Plantas/microbiología , Microbiología del Suelo , Transcriptoma , Triticum/genética , Triticum/microbiología
17.
EMBO Rep ; 22(10): e52457, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34402578

RESUMEN

Cytokinins are phytohormones that regulate plant development, growth, and responses to stress. In particular, cytokinin has been reported to negatively regulate plant adaptation to high salinity; however, the molecular mechanisms that counteract cytokinin signaling and enable salt tolerance are not fully understood. Here, we provide evidence that salt stress induces the degradation of the cytokinin signaling components Arabidopsis (Arabidopisis thaliana) response regulator 1 (ARR1), ARR10 and ARR12. Furthermore, the stress-activated mitogen-activated protein kinase 3 (MPK3) and MPK6 interact with and phosphorylate ARR1/10/12 to promote their degradation in response to salt stress. As expected, salt tolerance is decreased in the mpk3/6 double mutant, but enhanced upon ectopic MPK3/MPK6 activation in an MKK5DD line. Importantly, salt hypersensitivity phenotypes of the mpk3/6 line were significantly alleviated by mutation of ARR1/12. The above results indicate that MPK3/6 enhance salt tolerance in part via their negative regulation of ARR1/10/12 protein stability. Thus, our work reveals a new molecular mechanism underlying salt-induced stress adaptation and the inhibition of plant growth, via enhanced degradation of cytokinin signaling components.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteína Quinasa 3 Activada por Mitógenos , Tolerancia a la Sal/genética
18.
Front Genet ; 12: 682324, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178040

RESUMEN

Asymmetric somatic hybridization is an efficient strategy for crop breeding by introducing exogenous chromatin fragments, which leads to whole genomic shock and local chromosomal shock that induces genome-wide genetic variation including indel (insertion and deletion) and nucleotide substitution. Nucleotide substitution causes synonymous codon usage bias (SCUB), an indicator of genomic mutation and natural selection. However, how asymmetric somatic hybridization affects SCUB has not been addressed. Here, we explored this issue by comparing expressed sequence tags of a common wheat cultivar and its asymmetric somatic hybrid line. Asymmetric somatic hybridization affected SCUB and promoted the bias to A- and T-ending synonymous codon (SCs). SCUB frequencies in chromosomes introgressed with exogenous fragments were comparable to those in chromosomes without exogenous fragments, showing that exogenous fragments had no local chromosomal effect. Asymmetric somatic hybridization affected SCUB frequencies in indel-flanking sequences more strongly than in non-flanking sequences, and this stronger effect was present in both chromosomes with and without exogenous fragments. DNA methylation-driven SCUB shift was more pronounced than other SC pairs. SCUB shift was similar among seven groups of allelic chromosomes as well as three sub-genomes. Our work demonstrates that the SCUB shift induced by asymmetric somatic hybridization is attributed to the whole genomic shock, and DNA methylation is a putative force of SCUB shift during asymmetric somatic hybridization. Asymmetric somatic hybridization provides an available method for deepening the nature of SCUB shift and genetic variation induced by genomic shock.

19.
Plant J ; 105(4): 1010-1025, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217069

RESUMEN

Plants experiencing abiotic stress react by generating reactive oxygen species (ROS), compounds that, if allowed to accumulate to excess, repress plant growth and development. Anthocyanins induced by abiotic stress are strong antioxidants that neutralize ROS, whereas their over-accumulation retards plant growth. Although the mechanism of anthocyanin synthesis has been revealed, how plants balance anthocyanin synthesis under abiotic stress to maintain ROS homeostasis is unknown. Here, ROS-related proteins, SIMILAR TO RCD-ONEs (SROs), were analysed in Zea mays (maize), and all six SRO1 genes were inducible by a variety of abiotic stress agents. The constitutive expression of one of these genes, ZmSRO1e, in maize as well as in Arabidopsis thaliana increased the sensitivity of the plant to abiotic stress, but repressed anthocyanin biosynthesis and ROS scavenging activity. Loss-of-function mutation of ZmSRO1e enhanced ROS tolerance and anthocyanin accumulation. We showed that ZmSRO1e competed with ZmR1 (a core basic helix-loop-helix subunit of the MYB-bHLH-WD40 transcriptional activation complex) for binding with ZmPL1 (a core MYB subunit of the complex). Thus, during the constitutive expression of ZmSRO1e, the formation of the complex was compromised, leading to the repression of genes, such as ZmA4 (encoding dihydroflavonol reductase), associated with anthocyanin synthesis. Overall, the results have revealed a mechanism that allows the products of maize SRO1e to participate in the abiotic stress response.


Asunto(s)
Antocianinas/biosíntesis , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Zea mays/fisiología , Antocianinas/fisiología , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Zea mays/genética , Zea mays/metabolismo
20.
PLoS One ; 15(11): e0242624, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33211753

RESUMEN

Synonymous codon usage bias (SCUB) of both nuclear and organellar genes can mirror the evolutionary specialization of plants. The polyploidization process exposes the nucleus to genomic shock, a syndrome which promotes, among other genetic variants, SCUB. Its effect on organellar genes has not, however, been widely addressed. The present analysis targeted the chloroplast genomes of two leading polyploid crop species, namely cotton and bread wheat. The frequency of codons in the chloroplast genomes ending in either adenosine (NNA) or thymine (NNT) proved to be higher than those ending in either guanidine or cytosine (NNG or NNC), and this difference was conserved when comparisons were made between polyploid and diploid forms in both the cotton and wheat taxa. Preference for NNA/T codons was heterogeneous among genes with various numbers of introns and was also differential among the exons. SCUB patterns distinguished tetraploid cotton from its diploid progenitor species, as well as bread wheat from its diploid/tetraploid progenitor species, indicating that SCUB in the chloroplast genome partially mirrors the formation of polyploidies.


Asunto(s)
Uso de Codones , Codón , Genoma del Cloroplasto , Gossypium/genética , Poliploidía , Triticum/genética , Exones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...