Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(3): e2307769, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37696251

RESUMEN

Polarization imaging presents advantages in capturing spatial, spectral, and polarization information across various spectral bands. It can improve the perceptual ability of image sensors and has garnered more applications. Despite its potential, challenges persist in identifying band information and implementing image enhancement using polarization imaging. These challenges often necessitate integrating spectrometers or other components, resulting in increased complexities within image processing systems and hindering device miniaturization trends. Here, the characteristics of anisotropic absorption reversal are systematically elucidated in pucker-like group IV-VI semiconductors MX (M = Ge, Sn; X = S, Se) through theoretical predictions and experimental validations. Additionally, the fundamental mechanisms behind anisotropy reversal in different bands are also explored. The photodetector is constructed by utilizing MX as a light-absorbing layer, harnessing polarization-sensitive photoresponse for virtual imaging. The results indicate that the utilization of polarization reversal photodetectors holds advantages in achieving further multifunctional integration within the device structure while simplifying its configuration, including band information identification and image enhancement. This study provides a comprehensive analysis of polarization reversal mechanisms and presents a promising and reliable approach for achieving dual-band image band identification and image enhancement without additional auxiliary components.

2.
ACS Appl Mater Interfaces ; 13(29): 34178-34187, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34258989

RESUMEN

Two-dimensional (2D) materials with excellent photocatalytic properties and unique piezoelectric response have attracted great attention. However, these characters are rare for traditional 2D structures. With an intrinsic electric field, the Janus 2D materials show great promise in photocatalytic and out-of-plane piezoelectric applications. Herein, we show that Janus In2X2X' (X and X' = S, Se, and Te) monolayers are desirable in the overall water splitting and piezoelectric devices. Comprehensive investigations reveal that the band gaps of these Janus monolayers are from 0.34 to 2.27 eV. With proper band edge positions, strong solar absorption, fast transfer and efficient separation of carriers, and high solar to hydrogen (STH) efficiencies (reaching 37.70%), eight members of them stand out. Besides, the electrons and holes have sufficient driving forces in the process of redox reaction. The piezoelectric response for in- and out-of-plane is superior for all monolayers. These compelling features make them suitable for photocatalysts, sensors, actuators, and energy conversion devices.

3.
Phys Chem Chem Phys ; 23(2): 1510-1519, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33400744

RESUMEN

The van der Waals heterostructure (vdWH) has attracted widespread attention as a unique structure for future electronic and optoelectronic devices. In this paper, we constructed the ZnO-SeMoS and ZnO-SMoSe vdWHs and systematically investigated their electronic structures and band alignments considering vertical strain and external electric field effects. It is found that the ZnO-SeMoS and ZnO-SMoSe vdWHs both exhibit type-II band alignment with indirect band gaps of 1.31 and 0.63 eV respectively, depending on the interface characteristics. What's more, the band alignment of these two heterostructures can be tuned to type I or type III, and their band gap can be modified to direct feature by applying vertical strain and an electric field. The results reveal that ZnO/MoSSe vdWHs have promising potential in multi-functional nanodevices, and provide a way to modify the electronic properties of Janus-based heterojunctions using interface characteristics.

4.
Nanoscale ; 10(47): 22196-22202, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30325373

RESUMEN

Magnetic tunneling junctions (MTJs) have atomic thickness due to the use of two-dimensional (2D) materials. Combining density functional theory with non-equilibrium Green's function formalism, we systematically investigate the structural and magnetic properties of CrX3/h-BN/CrX3 (X = Br, I) MTJs, as well as their spin-dependent transport characteristics. Through calculation of the transmission spectrum, the large tunneling magnetoresistance (TMR) effect was observed in these MTJs. Moreover, their conductance based on two-dimensional materials was greatly improved over that of traditional MTJs. The transmission mechanism was analyzed using the symmetry of the orbit and the eigenstates of the transmitted electrons. We also discuss the problem of Schottky contact between different metal electrodes and devices. Our results suggest that MTJs based on two-dimensional ferromagnets are feasible.

5.
Nanoscale ; 6(13): 7226-31, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24882603

RESUMEN

The ability to control the appropriate layer thickness of transition metal dichalcogenides (TMDs) affords the opportunity to engineer many properties for a variety of applications in possible technological fields. Here we demonstrate that band-gap and mobility of ReSe2 nanosheet, a new member of the TMDs, increase when the layer number decreases, thus influencing the performances of ReSe2 transistors with different layers. A single-layer ReSe2 transistor shows much higher device mobility of 9.78 cm(2) V(-1) s(-1) than few-layer transistors (0.10 cm(2) V(-1) s(-1)). Moreover, a single-layer device shows high sensitivity to red light (633 nm) and has a light-improved mobility of 14.1 cm(2) V(-1) s(-1). Molecular physisorption is used as "gating" to modulate the carrier density of our single-layer transistors, resulting in a high photoresponsivity (Rλ) of 95 A W(-1) and external quantum efficiency (EQE) of 18 645% in O2 environment. This work highlights the fact that the properties of ReSe2 can be tuned in terms of the number of layers and gas molecule gating, and single-layer ReSe2 with appropriate band-gap is a promising material for future functional device applications.

6.
Sci Rep ; 4: 5209, 2014 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-24909387

RESUMEN

The photoelectrical properties of multilayer WS2 nanoflakes including field-effect, photosensitive and gas sensing are comprehensively and systematically studied. The transistors perform an n-type behavior with electron mobility of 12 cm(2)/Vs and exhibit high photosensitive characteristics with response time (τ) of <20 ms, photo-responsivity (Rλ) of 5.7 A/W and external quantum efficiency (EQE) of 1118%. In addition, charge transfer can appear between the multilayer WS2 nanoflakes and the physical-adsorbed gas molecules, greatly influencing the photoelectrical properties of our devices. The ethanol and NH3 molecules can serve as electron donors to enhance the Rλ and EQE significantly. Under the NH3 atmosphere, the maximum Rλ and EQE can even reach 884 A/W and 1.7 × 10(5)%, respectively. This work demonstrates that multilayer WS2 nanoflakes possess important potential for applications in field-effect transistors, highly sensitive photodetectors, and gas sensors, and it will open new way to develop two-dimensional (2D) WS2-based optoelectronics.

7.
Nanoscale ; 6(5): 2582-7, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24463644

RESUMEN

Layered GaS nanosheets have been attracting increasing research interests due to their highly anisotropic structural, electrical, optical, and mechanical properties, which are useful for many applications. However, single-layer or few-layer GaS-based photodetectors have been rarely reported. Here a few-layer GaS two-terminal photodetector with a fast and stable response has been fabricated. It shows different photo-responses in various gas environments. A higher photo-response (64.43 A W(-1)) and external quantum efficiency (EQE) (12,621%) is obtained in ammonia (NH3) than in air or oxygen (O2). A theoretical investigation shows that the charge transfer between the adsorbed gas molecules and the photodetector leads to the different photo-responses.

8.
Nano Lett ; 13(11): 5485-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24079953

RESUMEN

The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties.


Asunto(s)
Disulfuros/química , Topografía de Moiré , Molibdeno/química , Selenio/química , Modelos Moleculares , Óptica y Fotónica/métodos
9.
Phys Rev Lett ; 102(1): 017201, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19257233

RESUMEN

The origin of ferromagnetism in d;{0} semiconductors is studied using first-principles methods with ZnO as a prototype material. We show that the presence of spontaneous magnetization in nitrides and oxides with sufficient holes is an intrinsic property of these first-row d;{0} semiconductors and can be attributed to the localized nature of the 2p states of O and N. We find that acceptor doping, especially doping at the anion site, can enhance the ferromagnetism with much smaller threshold hole concentrations. The quantum confinement effect also reduces the critical hole concentration to induce ferromagnetism in ZnO nanowires. The characteristic nonmonotonic spin couplings in these systems are explained in terms of the band coupling model.

10.
Phys Rev Lett ; 102(3): 036402, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19257373

RESUMEN

To improve the photoelectrochemical activity of TiO2 for hydrogen production through water splitting, the band edges of TiO2 should be tailored to match with visible light absorption and the hydrogen or oxygen production levels. By analyzing the band structure of TiO2 and the chemical potentials of the dopants, we propose that the band edges of TiO2 can be modified by passivated codopants such as (Mo+C) to shift the valence band edge up significantly, while leaving the conduction band edge almost unchanged, thus satisfying the stringent requirements. The design principle for the band-edge modification should be applicable to other wide-band-gap semiconductors.

11.
Nanoscale Res Lett ; 4(2): 178-180, 2008 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-20596489

RESUMEN

The Rashba spin-orbit splitting of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells is investigated theoretically in the framework of effective-mass envelope function theory. The Rashba effect near the interface between GaAs and GaAlAs is assumed to be a linear relation with the distance from the quantum well side. We find that the splitting energy of the excited state is larger and less dependent on the position of the impurity than that of the ground state. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices.

12.
Phys Rev Lett ; 96(3): 035505, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16486726

RESUMEN

We study the mutual passivation of shallow donor and isovalent N in GaAs. We find that all the donor impurities, SiGa, GeGa, SAs, and SeAs, bind to N in GaAs:N, which has a large N-induced band-gap reduction relative to GaAs. For a group-IV impurity such as Si, the formation of the nearest-neighbor SiGa-NAs defect complex creates a deep donor level below the conduction band minimum (CBM). The coupling between this defect level with the CBM pushes the CBM upwards, thus restoring the GaAs band gap; the lowering of the defect level relative to the isolated SiGa shallow donor level is responsible for the increased electrical resistivity. Therefore, Si and N mutually passivate each other's electrical and optical activities in GaAs. For a group-VI shallow donor such as S, the binding between SAs and NAsdoes not form a direct bond; therefore, no mutual passivation exists in the GaAs:(S+N) system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...