Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506334

RESUMEN

Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.

2.
Sci Adv ; 10(5): eadi3105, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306427

RESUMEN

Nitrogen is an essential element for all life on earth. Nitrogen metabolism, including excretion, is essential for growth, development, and survival of plants and animals alike. Several nitrogen metabolic processes have been described, but the underlying molecular mechanisms are unclear. Here, we reveal a unique process of nitrogen metabolism in the whitefly Bemisia tabaci, a global pest. We show that it has acquired two bacterial uricolytic enzyme genes, B. tabaci urea carboxylase (BtUCA) and B. tabaci allophanate hydrolase (BtAtzF), through horizontal gene transfer. These genes operate in conjunction to not only coordinate an efficient way of metabolizing nitrogenous waste but also control B. tabaci's exceptionally flexible nitrogen recycling capacity. Its efficient nitrogen processing explains how this important pest can feed on a vast spectrum of plants. This finding provides insight into how the hijacking of microbial genes has allowed whiteflies to develop a highly economic and stable nitrogen metabolism network and offers clues for pest management strategies.


Asunto(s)
Hemípteros , Animales , Hemípteros/genética , Hemípteros/metabolismo , Hemípteros/microbiología , Genes Bacterianos , Plantas/genética , Nitrógeno/metabolismo
3.
Plant Cell Environ ; 47(5): 1526-1542, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251320

RESUMEN

Zinc (Zn) deficiency is the most prevalent micronutrient disorder in rice and leads to delayed development and decreased yield. Nevertheless, despite its primary importance, how rice responds to Zn deficiency remains poorly understood. This study presents genetic evidence supporting the crucial role of OsbZIP48 in regulating rice's response to Zn deficiency, consistent with earlier findings in the model plant Arabidopsis. Genetic inactivation of OsbZIP48 in rice seedlings resulted in heightened sensitivity to Zn deficiency and reduced Zn translocation from roots to shoots. Consistently, OsbZIP48 was constitutively expressed in roots, slightly induced by Zn deficiency in shoots and localized into nuclei induced by Zn deficiency. Comparative transcriptome analysis of the wild-type plants and osbzip48 mutant grown under Zn deficiency enabled the identification of OsbZIP48 target genes, including key Zn transporter genes (OsZIP4 and OsZIP8). We demonstrated that OsbZIP48 controlled the expressions of these genes by directly binding to their promoters, specifically to the Zn deficiency response element motif. This study establishes OsbZIP48 as a critical transcription factor in rice's response to Zn deficiency, offering valuable insights for developing Zn-biofortified rice varieties to combat global Zn limitation.


Asunto(s)
Arabidopsis , Oryza , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oryza/metabolismo , Zinc/metabolismo , Perfilación de la Expresión Génica , Arabidopsis/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Cell ; 36(2): 383-403, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37847118

RESUMEN

The Casparian strip (CS) is a ring-like lignin structure deposited between endodermal cells that forms an apoplastic barrier to control the selective uptake of nutrients in vascular plants. However, the molecular mechanism of CS formation in rice (Oryza sativa), which possesses one CS each in the endodermis and exodermis, is relatively unknown. Here, we functionally characterized CS INTEGRITY FACTOR1 (OsCIF1a, OsCIF1b), OsCIF2, and SCHENGEN3 (OsSGN3a, OsSGN3b) in rice. OsCIF1s and OsCIF2 were mainly expressed in the stele, while OsSGN3s localized around the CS at the endodermis. Knockout of all three OsCIFs or both OsSGN3s resulted in a discontinuous CS and a dramatic reduction in compensatory (less localized) lignification and suberization at the endodermis. By contrast, ectopic overexpression of OsCIF1 or OsCIF2 induced CS formation as well as overlignification and oversuberization at single or double cortical cell layers adjacent to the endodermis. Ectopic co-overexpression of OsCIF1 and SHORTROOT1 (OsSHR1) induced the formation of more CS-like structures at multiple cortical cell layers. Transcriptome analysis identified 112 downstream genes modulated by the OsCIF1/2-OsSGN3 signaling pathway, which is involved in CS formation and activation of the compensatory machinery in native endodermis and nonnative endodermis-like cell layers. Our results provide important insights into the molecular mechanism of CIF-mediated CS formation at the root endodermal and nonendodermal cell layers.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Oryza/genética , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Péptidos/metabolismo , Transducción de Señal/genética
5.
Adv Sci (Weinh) ; 11(10): e2306653, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145364

RESUMEN

Polyunsaturated fatty acids (PUFAs) are essential nutrients for all living organisms. PUFA synthesis is mediated by Δ12 desaturases in plants and microorganisms, whereas animals usually obtain PUFAs through their diet. The whitefly Bemisia tabaci is an extremely polyphagous agricultural pest that feeds on phloem sap of many plants that do not always provide them with sufficient PUFAs. Here, a plant-derived Δ12 desaturase gene family BtFAD2 is characterized in B. tabaci and it shows that the BtFAD2-9 gene enables the pest to synthesize PUFAs, thereby significantly enhancing its fecundity. The role of BtFAD2-9 in reproduction is further confirmed by transferring the gene to Drosophila melanogaster, which also increases the fruit fly's reproduction. These findings reveal an extraordinary evolutionary scenario whereby a phytophagous insect acquired a family of plant genes that enables it to synthesize essential nutrients, thereby lessening its nutritional dependency and allowing it to feed and reproduce on many host plants.


Asunto(s)
Ácido Graso Desaturasas , Hemípteros , Animales , Ácido Graso Desaturasas/genética , Hemípteros/genética , Drosophila melanogaster , Ácidos Grasos Insaturados , Estearoil-CoA Desaturasa , Reproducción
6.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069359

RESUMEN

Rice (Oryza sativa) exhibits tremendous aluminum (Al)-tolerance. The C2H2-transcription factor (TF) ART1 critically regulates rice Al tolerance via modulation of specific gene expression. However, little is known about the posttranscriptional ART1 regulation. Here, we identified an ART1-interacted gene OsNAC016 via a yeast two-hybrid (Y2H) assay. OsNAC016 was primarily expressed in roots and weakly induced by Al. Immunostaining showed that OsNAC016 was a nuclear protein and localized in all root cells. Knockout of OsNAC016 did not alter Al sensitivity. Overexpression of OsNAC016 resulted in less Al aggregation within roots and enhanced Al tolerance in rice. Based on transcriptomic and qRT-PCR evaluations, certain cell-wall-related or ART-regulated gene expressions such as OsMYB30 and OsFRDL4 were altered in OsNAC016-overexpressing plants. These results indicated that OsNAC016 interacts with ART1 to cooperatively regulate some Al-tolerance genes and is a critical regulatory factor in rice Al tolerance.


Asunto(s)
Oryza , Oryza/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
7.
Cell Rep ; 41(12): 111843, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543122

RESUMEN

The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.


Asunto(s)
Mariposas Nocturnas , Animales , Spodoptera/genética , Mariposas Nocturnas/genética , Transcriptoma , Receptores de Superficie Celular/genética
8.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233306

RESUMEN

Salt stress is a critical limiting factor for rice growth and production. Although numerous salt-tolerant genes have been identified, the mechanism underlying salt stress tolerance in rice remains unclear. This study reports the need for an uncharacterized WRKY transcription factor OsWRKY54 for rice salt-tolerance. Salt stress resulted in a rapid induction of OsWRKY54 expression in roots. Immunostaining analysis showed that it was mainly expressed in the stele. The loss of OsWRKY54 resulted in greater Na accumulation in shoots and enhanced sensitivity of rice plants to salt stress. The real-time quantitative PCR (qRT-PCR) and transcriptome analysis revealed that OsWRKY54 regulated the expression of some essential genes related to salt tolerance, such as OsNHX4 and OsHKT1;5. Furthermore, OsWRKY54 was found to regulate OsHKT1;5 expression by directly binding to the W-box motif in its promoter. Thus, these results indicated that OsWRKY54 was a critical regulatory factor in salt tolerance in rice.


Asunto(s)
Oryza , Tolerancia a la Sal , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Cell ; 34(8): 2948-2968, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35543496

RESUMEN

Plants have evolved a lignin-based Casparian strip (CS) in roots that restricts passive diffusion of mineral elements from the soil to the stele. However, the molecular mechanisms underlying CS formation in rice (Oryza sativa), which contains a CS at both the exodermis and endodermis, are poorly understood. Here, we demonstrate that CS formation at the rice endodermis is redundantly regulated by three MYELOBLASTOSIS (MYB) transcription factors, OsMYB36a, OsMYB36b, and OsMYB36c, that are highly expressed in root tips. Knockout of all three genes resulted in a complete absence of CS at the endodermis and retarded plant growth in hydroponic conditions and in soil. Compared with the wild-type, the triple mutants showed higher calcium (Ca) levels and lower Mn, Fe, Zn, Cu, and Cd levels in shoots. High Ca supply further inhibited mutant growth and increased Ca levels in shoots. Transcriptome analysis identified 1,093 downstream genes regulated by OsMYB36a/b/c, including the key CS formation gene OsCASP1 and other genes that function in CS formation at the endodermis. Three OsMYB36s regulate OsCASP1 and OsESB1 expression by directly binding to MYB-binding motifs in their promoters. Our findings thus provide important insights into the mechanism of CS formation at the endodermis and the selective uptake of mineral elements in roots.


Asunto(s)
Oryza , Raíces de Plantas , Pared Celular/metabolismo , Minerales/metabolismo , Oryza/genética , Raíces de Plantas/metabolismo , Suelo
10.
Insects ; 12(12)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34940171

RESUMEN

Understanding how species that follow different life-history strategies respond to stressful temperature can be essential for efficient treatments of agricultural pests. Here, we focused on how the development, reproduction, flight, and reproductive consequences of migration of Cnaphalocrocis medinalis were influenced by exposure to different rearing temperatures in the immature stage. We found that the immature rice leaf roller that were reared at low temperatures (18 and 22 °C) developed more slowly than the normal temperature 26 °C, while those reared at high temperatures (34 °C) grew faster. Female adults from low immature stage rearing temperatures showed stronger reproductive ability than those at 26 and 34 °C, such as the preoviposition period (POP) significantly decreased, while the total lifetime fecundity obviously increased. However, 34 °C did not significantly reduce the reproductive performances of females compared to 26 °C. On the contrary, one relative decreased tendency of flight capacity was found in the lower immature temperature treatments. Furthermore, flight is a costly strategy for reproduction output to compete for limited internal resources. In the lower temperature treatments, after d1-tethered flight treatment, negative reproductive consequences were found that flight significantly decreased the lifetime fecundity and mating frequency of females from low rearing temperatures in the immature stage compared to the controls (no tethered-flight). However, in the 26 and 34 °C treatments, the same flight treatment induced a positive influence on reproduction, which significantly reduced the POP and period of first oviposition (PFO). The results suggest that the experience of relative high temperatures in the immature stage is more likely to trigger the onset of migration, but lower temperatures in the immature stage may induce adults to have a greater resident propensity with stronger reproductive ability.

11.
BMC Plant Biol ; 21(1): 546, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34800972

RESUMEN

BACKGROUND: NAC (NAM, ATAF and CUC) transcription factors (TFs) play vital roles in plant development and abiotic stress tolerance. Salt stress is one of the most limiting factors for rice growth and production. However, the mechanism underlying salt tolerance in rice is still poorly understood. RESULTS: In this study, we functionally characterized a rice NAC TF OsNAC3 for its involvement in ABA response and salt tolerance. ABA and NaCl treatment induced OsNAC3 expression in roots. Immunostaining showed that OsNAC3 was localized in all root cells. OsNAC3 knockout decreased rice plants' sensitivity to ABA but increased salt stress sensitivity, while OsNAC3 overexpression showed an opposite effect. Loss of OsNAC3 also induced Na+ accumulation in the shoots. Furthermore, qRT-PCR and transcriptomic analysis were performed to identify the key OsNAC3 regulated genes related to ABA response and salt tolerance, such as OsHKT1;4, OsHKT1;5, OsLEA3-1, OsPM-1, OsPP2C68, and OsRAB-21. CONCLUSIONS: This study shows that rice OsNAC3 is an important regulatory factor in ABA signal response and salt tolerance.


Asunto(s)
Ácido Abscísico/metabolismo , Oryza/genética , Oryza/fisiología , Estrés Salino/efectos de los fármacos , Tolerancia a la Sal/genética , Factores de Transcripción/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo
12.
Environ Entomol ; 50(5): 1241-1247, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34387308

RESUMEN

In most organisms, various physiological and behavioral functions are expressed rhythmically. Previous studies have shown that thermoperiod is an important factor affecting circadian clock-related genes that regulate insect locomotor activity. Bradysia odoriphaga Yang & Zhang is an underground pest that attacks more than 30 crops but is especially damaging to Chinese chives. In this study, we analyzed the adult eclosion time and period (Boper) gene expression in B. odoriphaga as affected by temperature (cycling vs constant temperature), insect stage, and tissue specific. We found that the eclosion time and expression of the Boper gene changed during the temperature cycle but not under a constant temperature. Silencing of Boper expression significantly decreased the adult eclosion rate and significantly increased adult mortality and malformation. The findings indicate that thermoperiod alters Boper expression and regulates the eclosion rhythm.


Asunto(s)
Cebollino , Dípteros , Animales , Ritmo Circadiano/genética , Dípteros/genética , Expresión Génica , Nematocera , Temperatura
13.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206144

RESUMEN

The Casparian strip domain protein 1 (OsCASP1) is necessary for the formation of the Casparian strip (CS) in the rice endodermis. It also controls Ca2+ transport to the stele. Here, we demonstrated that OsCASP1 overexpression enhanced Ca tolerance in rice. Under normal conditions, OsCASP1-overexpressed lines showed similar concentrations of essential metals in the roots and shoots compared to the wild type, while under high Ca conditions, Ca in the roots, shoots, and xylem sap of the OsCASP1-overexpressed lines was significantly decreased. This did not apply to other essential metals. Ca-inhibited growth was significantly alleviated in the OsCASP1-overexpressed lines. Furthermore, OsCASP1 overexpression resulted in earlier formation of both the CS and functional apoplastic barrier in the endodermis but did not induce ectopic CS formation in non-endodermal cell layers and affect suberin accumulation in the endodermis. These results indicate that the overexpression of OsCASP1 promotes CS formation in endodermal cells and inhibits Ca2+ transport by the apoplastic pathway, restricting Ca accumulation in the roots and shoots under high Ca conditions. Taken together, the results suggest that OsCASP1 overexpression is an effective way to improve rice adaptation to high Ca environments.


Asunto(s)
Calcio/metabolismo , Caspasa 1/genética , Oryza/genética , Caspasa 1/metabolismo , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo
15.
Plant Sci ; 307: 110894, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33902855

RESUMEN

Cadmium (Cd) is a highly toxic element to living organisms, and its accumulation in the edible portions of crops poses a potential threat for human health. The molecular mechanisms underlying Cd detoxification and accumulation are not fully understood in plants. In this study, the involvement of a C-type ABC transporter, OsABCC9, in Cd tolerance and accumulation in rice was investigated. The expression of OsABCC9 was rapidly induced by Cd treatment in a concentration-dependent manner in the root. The transporter, localized on the tonoplast, was mainly expressed in the root stele under Cd stress. OsABCC9 knockout mutants were more sensitive to Cd and accumulated more Cd in both the root and shoot compared to the wild-type. Moreover, the Cd concentrations in the xylem sap and grain were also significantly increased in the knockout lines, suggesting that more Cd was distributed from root to shoot and grain in the mutants. Heterologous expression of OsABCC9 in yeast enhanced Cd tolerance along with an increase of intracellular Cd content. Taken together, these results indicated that OsABCC9 mediates Cd tolerance and accumulation through sequestration of Cd into the root vacuoles in rice.


Asunto(s)
Transporte Biológico/genética , Transporte Biológico/fisiología , Cadmio/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Oryza/fisiología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Grano Comestible/metabolismo , Grano Comestible/fisiología , Regulación de la Expresión Génica de las Plantas , Brotes de la Planta/genética
16.
Genes (Basel) ; 12(5)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925652

RESUMEN

The Mediator complex transduces information from the DNA-bound transcription factors to the RNA polymerase II transcriptional machinery. Research on plant Mediator subunits has primarily been performed in Arabidopsis, while very few of them have been functionally characterized in rice. In this study, the rice Mediator subunit 16, OsMed16, was examined. OsMed16 encodes a putative protein of 1301 amino acids, which is longer than the version previously reported. It was expressed in various rice organs and localized to the nucleus. The knockout of OsMed16 resulted in rice seedling lethality. Its overexpression led to the retardation of rice growth, low yield, and spontaneous cell death in the leaf blade and sheath. RNA sequencing suggested that the overexpression of OsMed16 altered the expression of a large number of genes. Among them, the upregulation of some defense-related genes was verified. OsMed16 can regulate the expression of a wealth of genes, and alterations in its expression have a profound impact on plant growth, development, and defense responses in rice.


Asunto(s)
Muerte Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Aminoácidos/genética , Plantones/genética , Regulación hacia Arriba/genética
17.
Cell ; 184(7): 1693-1705.e17, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770502

RESUMEN

Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.


Asunto(s)
Hemípteros/genética , Proteínas de Insectos/metabolismo , Solanum lycopersicum/genética , Toxinas Biológicas/metabolismo , Animales , Transferencia de Gen Horizontal , Genes de Plantas , Glucósidos/química , Glucósidos/metabolismo , Hemípteros/fisiología , Herbivoria , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/clasificación , Proteínas de Insectos/genética , Mucosa Intestinal/metabolismo , Solanum lycopersicum/metabolismo , Malonil Coenzima A/metabolismo , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , Toxinas Biológicas/química
18.
Rice (N Y) ; 13(1): 79, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33284415

RESUMEN

BACKGROUND: Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3-1. RESULTS: Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. CONCLUSIONS: These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.

19.
Plant J ; 104(5): 1233-1250, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32989851

RESUMEN

The root cell wall is the first and primary target of aluminum (Al) toxicity. Monocots such as rice (Oryza sativa) can accumulate appreciable levels of hydroxycinnamic acids (HCAs) to modify and cross-link hemicellulose and/or lignin of the cell wall. Nevertheless, it is unclear whether this HCA-mediated modification of the cell wall is important for Al accumulation and resistance. We previously isolated and characterized a rice ral1 (resistance to aluminum 1) mutant that shows enhanced Al resistance. In this study, we cloned RAL1 and found that it encodes the 4-coumarate:coenzyme A ligase 4CL4, an enzyme putatively involved in lignin biosynthesis. Mutation of RAL1/4CL4 reduces lignin content and increases the accumulation of its substrates 4-coumaric acid (PA) and ferulic acid (FA). We demonstrate that altered lignin accumulation is not required for the enhanced Al resistance in ral1/4cl4 mutants. We found that the increased accumulation of PA and FA can reduce Al binding to hemicellulose and consequently enhance Al resistance in ral1/4cl4 mutants. Al stress is able to trigger PA and FA accumulation, which is likely caused by the repression of the expression of RAL1/4CL4 and its homologous genes. Our results thus reveal that Al-induced PA and FA accumulation is actively and positively involved in Al resistance in rice through the modification of the cell wall and thereby the reduced Al binding to the cell wall.


Asunto(s)
Aluminio/toxicidad , Coenzima A Ligasas/metabolismo , Lignina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Aluminio/farmacocinética , Pared Celular/genética , Pared Celular/metabolismo , Coenzima A Ligasas/genética , Ácidos Cumáricos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/efectos de los fármacos , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
20.
Plant Signal Behav ; 15(11): 1813999, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857669

RESUMEN

Soil saline-alkalization is a major environmental stress that impairs plant growth and crop productivity. Plant roots are the primary site for the perception of soil stresses; however, the regulation mechanism engaged in the saline-alkaline stress response in plant roots is not well understood. In this study, we identified how a rice Ca2+/calmodulin-dependent protein kinase, OsDMI3, confers saline-alkaline tolerance in rice root growth. We measured the OsDMI3 activity by an in-gel kinase assay, Na+ content by NaHCO3 treatment, and Na+ and H+ fluxes by noninvasive micro-test technology (NMT). Furthermore, a real-time reverse-transcription polymerase chain reaction (RT-PCR) analysis was performed to identify the genes upregulated in response to NaHCO3 treatment in rice roots. The results showed that NaHCO3 significantly increased OsDMI3 expression and activity in rice roots. This was consistent with the results of Na+ content and NMT that indicated OsDMI3 promoted root elongation under saline-alkaline stress by reducing root Na+ and H+ influx. Moreover, real-time RT-PCR analysis revealed that OsDMI3 up-regulated the transcript levels of OsSOS1 and PM-H+-ATPase genes OsA3 and OsA8 in saline-alkaline stressed rice plants. Collectively, our results suggest that OsDMI3 could promote saline-alkaline tolerance in rice roots by modulating the Na+ and H+ influx. These findings provide an important genetic target for protection of growth in rice exposed to saline-alkaline stress.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , ATPasas de Translocación de Protón/metabolismo , Tolerancia a la Sal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...