Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38535448

RESUMEN

Shellfish poisoning is a common food poisoning. To comprehensively characterize proteome changes in the whole brain due to shellfish poisoning, Tandem mass tag (TMT)-based differential proteomic analysis was performed with a low-dose chronic shellfish poisoning model in mice. A total of 6798 proteins were confidently identified, among which 123 proteins showed significant changes (fold changes of >1.2 or <0.83, p < 0.05). In positive regulation of synaptic transmission, proteins assigned to a presynaptic membrane (e.g., Grik2) and synaptic transmission (e.g., Fmr1) changed. In addition, altered proteins in nervous system development were observed, suggesting that mice suffered nerve damage due to the nervous system being activated. Ion transport in model mice was demonstrated by a decrease in key enzymes (e.g., Kcnj11) in voltage-gated ion channel activity and solute carrier family (e.g., Slc38a3). Meanwhile, alterations in transferase activity proteins were observed. In conclusion, these modifications observed in brain proteins between the model and control mice provide valuable insights into understanding the functional mechanisms underlying shellfish poisoning.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Intoxicación por Mariscos , Animales , Ratones , Proteómica , Alimentos Marinos , Encéfalo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
2.
Anal Biochem ; 685: 115388, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967783

RESUMEN

The retrospective detection of organophosphorus nerve agents (OPNAs) exposure has been achieved by the off-site analysis of OPNA-human serum albumin (HSA) adducts using mass spectrometry-based detection approaches. However, few specific methods are accessible for on-site detection. To address this, a novel immunofluorescence microfluidic chip (IFMC) testing system combining europium chelated microparticle (EuCM) with self-driven microfluidic chip assay has been established to unambiguously determine soman (GD) and VX exposure within 20 min, respectively. The detection system was based on the principle of indirect competitive enzyme-linked immunosorbent assay. The specific monoclonal antibodies that respectively recognized the phosphonylated tyrosine 411 of GD-HSA and VX-HSA adducts were labeled by EuCM to capture corresponding adducts in the exposed samples. The phosphonylated peptides in the test line and goat-anti-rabbit antibody in the control line were utilized to bind the EuCM-labeled antibodies for signal exhibition. The developed IFMC chip could discriminatively detect exposed HSA adducts with high specificity, demonstrating a low limit of detection at exposure concentrations of 0.5 × 10-6 mol/L VX and 1.0 × 10-6 mol/L GD. The exposed serum samples can be qualitatively detected following an additional pretreatment procedure. This is a novel rapid detection system capable of discriminating GD and VX exposure, providing an alternative method for rapidly identifying OPNA exposure.


Asunto(s)
Soman , Animales , Humanos , Conejos , Soman/metabolismo , Europio , Microfluídica , Estudios Retrospectivos , Albúmina Sérica Humana , Técnica del Anticuerpo Fluorescente
3.
J Chromatogr A ; 1708: 464373, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717454

RESUMEN

Ricin is a highly toxic protein toxin that poses a potential bioterrorism threat due to its potency and widespread availability. However, the accurate quantification of ricin through absolute mass spectrometry (MS) using a protein standard absolute quantification (PSAQ) strategy is not widely practiced. This limitation primarily arises from the presence of interchain disulfide bonds, which hinder the production of full-length isotope-labeled ricin as an internal standard (IS) in vitro. In this study, we have developed a novel approach for the absolute quantification of ricin in complex matrices using recombinant single-chain and full-length mutant ricin as the protein IS, instead of isotope-labeled ricin, in conjunction with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The amino acid sequence of the ricin mutant internal standard (RMIS) was designed by introducing site mutations in specific amino acids of trypsin/Glu-C enzymatic digestion marker peptides of ricin. To simplify protein expression, the A-chain and B-chain of RMIS were directly linked to replace the original interchain disulfide bonds. The RMISs were synthesized using an Escherichia coli expression system. An appropriate RMIS was selected as the protein IS based on consistent digestion efficiency, UHPLC-MS/MS behavior, antibody recognition function, lectin activity, and proper depurination activity with intact ricin. The RMIS was utilized to simultaneously quantify A- and B-chain marker peptides of ricin through UHPLC-MS/MS. This method was thoroughly validated using a milk matrix. By employing internal protein standards, this quantitative strategy overcomes the challenges posed by variations in extraction recoveries, matrix effects, and digestion efficiency encountered when working with different matrices. Consequently, calibration curves generated from milk matrix-spiked samples were utilized to accurately and precisely quantify ricin in river water and plasma samples. Moreover, the established method successfully detected intact ricin in samples obtained from the sixth Organization for the Prohibition of Chemical Weapons (OPCW) exercise on biotoxin analysis. This study presents a novel PSAQ strategy that enables the accurate quantification of ricin in complex matrices.


Asunto(s)
Ricina , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Secuencia de Aminoácidos , Escherichia coli/genética , Disulfuros
4.
Chem Commun (Camb) ; 59(74): 11089-11092, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37642316

RESUMEN

We herein report a direct and efficient protocol for phosphorylation of quinoxalines, which employs aerobic oxygen as the green oxidant under catalyst-free conditions. This methodology represents one of the most environmentally friendly and easily handled protocols, providing a series of phosphorylated quinoxalines in good to excellent yields. Control experiments clearly indicated that the reaction followed a dearomatization-rearomatization strategy.

5.
Anal Bioanal Chem ; 415(16): 3275-3284, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37266687

RESUMEN

Carbamate nerve agents (CMNAs) are a type of lethal cholinesterase inhibitor with one or more quaternary amine centres and aromatic rings. CMNAs have been recently added to the Annex on Chemicals of the Chemical Weapons Convention (CWC) and Schedules of Controlled Chemicals of China. In this study, a rapid, sensitive and selective method was developed for the fluorescence detection of ambenonium chloride (AC) through host-guest and electrostatic dual interactions between AC and cyclodextrin/11-mercaptoundecanoic acid (CD/MUA) dually functionalized gold nanoclusters (AuNCs). Through this method, AC was detected with a limit of detection of 10.0 ng/mL. Method evaluation showed high selectivity towards AC over other related compounds. The practical applicability was verified, as satisfactory recoveries were obtained for AC spiked in river water and urine, as well as Proficiency Test samples from Organisation for the Prohibition of Chemical Weapons (OPCW). In addition, a fluorescence sensing array comprising four AuNCs was designed to distinguish six carbamates and structurally similar compounds. This method provides a potential approach for the rapid, sensitive and selective recognition and detection of CMNAs.


Asunto(s)
Nanopartículas del Metal , Agentes Nerviosos , Oro/química , Carbamatos , Espectrometría de Fluorescencia/métodos , China , Nanopartículas del Metal/química , Límite de Detección
6.
Protein Pept Lett ; 30(5): 367-373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37016524

RESUMEN

BACKGROUND: As a peptide originally discovered from Conus achates by mass spectrometry and cDNA sequencing, Ac6.4 contains 25 amino acid residues and three disulfide bridges. Our previous study found that this peptide possesses 80% similarity to MVIIA by BLAST and that MVIIA is a potent and selective blocker of N-type voltage-sensitive calcium channels in neurons. OBJECTIVE: To recognize the target protein and analgesic activity of Ac6.4 from Conus achates. METHODS: In the present study, we synthesized Ac6.4, expressed the Trx-Ac6.4 fusion protein, tested Ac6.4 for its inhibitory activity against Cav2.2 in CHO cells and investigated Ac6.4 and Trx-Ac6.4 for their analgesic activities in mice. RESULTS: Data revealed that Ac6.4 had strong inhibitory activity against Cav2.2 (IC50 = 43.6 nM). After intracranial administration of Ac6.4 (5, 10, 20 µg/kg) and Trx-Ac6.4 (20, 40, 80 µg/kg), significant analgesia was observed. The analgesic effects (elevated pain thresholds) were dose-dependent. CONCLUSION: This study expands our knowledge of the peptide Ac6.4 and provides new possibilities for developing Cav2.2 inhibitors and analgesic drugs.


Asunto(s)
Caracol Conus , Ratones , Animales , Cricetinae , Caracol Conus/química , Caracol Conus/metabolismo , Cricetulus , Analgésicos/farmacología , Analgésicos/química , Péptidos/química , Canales de Calcio Tipo N/metabolismo
7.
RSC Adv ; 12(30): 19246-19252, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35865595

RESUMEN

It has been a challenge to achieve rapid, simple, and effective discrimination of organophosphorus nerve agents (typical chemical warfare agents) due to the similar chemical properties of the targets such as sarin, soman, cyclosarin and VX. In this study, we propose a chemiluminescence sensor array that can effectively discriminate organophosphorus nerve agents by organophosphorus-H2O2 reaction, which produces peroxyphosphonate intermediate and regulates the chemiluminescence intensity. A simple chemiluminescence sensor array based on different chemiluminescence characteristics of the four organophosphorus nerve agents in the luminol-H2O2 system and layered double hydroxide-luminol-H2O2 system has been constructed. Four agents can be well distinguished at a concentration of 1.0 mg L-1 when linear discriminant analyses and hierarchical cluster analyses are smartly combined. The high accuracy (100%) evaluation of 20 blind samples demonstrates the practicability of this proposed chemiluminescence sensor array.

8.
Se Pu ; 39(8): 913-920, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34212592

RESUMEN

Cyanogen chloride (ClCN) has been widely used in industrial production. ClCN is also listed in the Schedule of the Chemical Weapons Convention (CWC). The use of traditional colorimetric analysis or gas chromatography for the detection of ClCN has been characterized by low efficiency and poor sensitivity. In this study, a method was established for the qualitative analysis and quantitative detection of ClCN in organic and water matrices by gas chromatography-mass spectrometry (GC-MS) based on thiol derivatization. 1-Butylthiol was selected as the optimal derivatization reagent. The optimal temperature for thiol derivatization in the organic matrices was 40 ℃ and the reaction time was 10 min. The pH for derivatization was approximately 9. The ClCN in the organic matrices was directly analyzed by GC-MS after derivatization. The conditions of ClCN derivatization in the water matrices were the same as those in the organic matrices. After the derivatization of ClCN, headspace-solid phase microextraction (HS-SPME) was employed during sample preparation for water matrices. Different temperatures for HS-SPME were explored, and the optimal temperature was found to be 55 ℃. The product of thiol derivatization was confirmed as butyl thiocyanate. The main fragmentation patterns and mass spectrometric cleavage pathway were investigated by GC-MS/MS. The quantitative determination of ClCN in organic and water matrices was conducted via the internal standard and external standard methods, respectively. ClCN showed good linearity in the corresponding ranges in the organic and water matrices. The correlation coefficients for both matrices were greater than 0.99. The linearities of ClCN in the organic and water matrices were in the range of 20-2000 µg/L and 20-1200 µg/L, respectively. An organic sample and water samples from different substrates were selected to verify the accuracy and precision of the method at three spiked levels. The average spiked recoveries of ClCN in the organic sample and water samples were 87.3%-98.8% and 97.6%-102.2%, respectively. The corresponding relative standard deviations (RSDs, n=6) were 2.1%-4.7% and 2.8%-4.2%. The derivatization method established in this study showed good reaction specificity. The method was successfully applied in the analysis of samples obtained from the Organisation for the Prohibition of Chemical Weapons (OPCW). The method established in this study for the detection of ClCN showed high sensitivity and precision, and could aid in the analysis and detection of ClCN in the environment.

9.
Se Pu ; 39(3): 260-270, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-34227307

RESUMEN

Type Ⅱ ribosome-inactivating proteins (RIPs) are an important class of protein toxins that consist of A and B chains linked by an interchain disulfide bond. The B-chain with lectin-like activity is responsible for binding to the galactose-containing receptors on eukaryotic cell surfaces, which is essential for A-chain internalization by endocytosis. The A-chain has N-glycosidase activity that irreversibly depurinates a specific adenine from 28S ribosomal RNA (28S rRNA) and terminates protein synthesis. The synergistic effect of the A-B chain inactivates the ribosome, inhibits protein synthesis, and exhibits high cytotoxicity. Ricin and abrin that are expressed by the plants Ricinus communis and Abrus precatorius, respectively, are typical type Ⅱ RIPs. The toxicity of ricin and abrin are 385 times and 2885 times, respectively, more that of the nerve agent VX. Owing to their ease of preparation, wide availability, and potential use as a bioterrorism agent, type Ⅱ RIPs have garnered increasing attention in recent years. Ricin is listed as a prohibited substance under schedule 1A of the Chemical Weapons Convention (CWC). The occurrence of ricin-related bioterrorism incidents in recent years has promoted the development of accurate, sensitive, and rapid detection and identification technology for type Ⅱ RIPs. Significant progress has been made in the study of toxicity mechanisms and detection methods of type Ⅱ RIPs, which primarily involve qualitative and quantitative analysis methods including immunological assays, mass spectrometry analysis methods, and toxin activity detection methods based on depurination and cytotoxicity. Immunoassays generally involve the specific recognition of antigens and antibodies, which is based on oligonucleotide molecular recognition elements called aptamers. These methods are fast and highly sensitive, but for highly homologous proteins in complex samples, they provide false positive results. With the rapid development of biological mass spectrometry detection technology, techniques such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are widely used in the identification of proteins. These methods not only provide accurate information on molecular weight and structure of proteins, but also demonstrate accurate quantification. Enzyme digestion combined with mass spectrometry is the predominantly used detection method. Accurate identification of protein toxins can be achieved by fingerprint analysis of enzymatically digested peptides. For analysis of protein toxins in complex samples, abundant peptide markers are obtained using a multi-enzyme digestion strategy. Targeted mass spectrometry analysis of peptide markers is used to obtain accurate qualitative and quantitative information, which effectively improves the accuracy and sensitivity of the identification of type Ⅱ RIP toxins. Although immunoassay and mass spectrometry detection methods can provide accurate identification of type Ⅱ RIPs, they cannot determine whether the toxins will retain potency. The widely used detection methods for activity analysis of type Ⅱ RIPs include depurination assay based on N-glycosidase activity and cytotoxicity assay. Both the methods provide simple, rapid, and sensitive analysis of type Ⅱ RIP toxicity, and complement other detection methods. Owing to the importance of type Ⅱ RIP toxins, the Organization for the Prohibition of Chemical Weapons (OPCW) has proposed clear technical requirements for the identification and analysis of relevant samples. We herein reviewed the structural characteristics, mechanism of action, and the development and application of type Ⅱ RIP detection methods; nearly 70 studies on type Ⅱ RIP toxins and their detection methods have been cited. In addition to the technical requirements of OPCW for the unambiguous identification of biotoxins, the trend of future development of type Ⅱ RIP-based detection technology has been explored.


Asunto(s)
Abrina , Proteínas Inactivadoras de Ribosomas/análisis , Ricina , Abrina/análisis , Proteínas de Plantas/análisis , Ribosomas , Ricina/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Toxicol Lett ; 344: 46-57, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33705862

RESUMEN

Sulfur mustard (SM) is a blister chemical warfare agent with severe cytotoxicity and genotoxicity. It can extensively alkylate important macromolecules in organisms, such as proteins, DNA, and lipids, and produce a series of metabolites, among which the characteristic ones can be used as biomarkers. The exact toxicological mechanisms of SM remain unclear but mainly involve the DNA lesions induced by alkylation and oxidative stress caused by glutathione depletion. Various methods have been used to analyze DNA damage caused by SM. Among these methods, liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology stands out and makes it possible to observe damage in view of biomarkers induced by SM. Sample preparation is critical for detection by LC-MS/MS and mainly includes DNA isolation, adduct hydrolysis, and adduct purification. Moreover, optimization of chromatographic conditions, selection of MS transitions, and quantitative strategies are also essential. SM-DNA adducts are generally considered to be N7-HETEG, O6-HETEG, N7-BisG, and N3-HETEA. This article proposes some other possibilities of SM-DNA adducts for the identification of SM genotoxicity.


Asunto(s)
Sustancias para la Guerra Química/toxicidad , Aductos de ADN , Gas Mostaza/toxicidad , Animales , Biomarcadores/sangre , Humanos
11.
Mikrochim Acta ; 185(3): 205, 2018 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-29594762

RESUMEN

Water-soluble and functional copper nanoclusters (CuNCs) were prepared by using folic acid (FA) that serves both as a reducing reagent and a stabilizer. FA also acts as a functional ligand on the surface of the CuNCs, and this can be exploited to target the folate receptor which is over-expressed on the surface of HeLa cells. The FA-modified CuNCs nanoclusters have an average size of ca. 0.9 nm and are stable in aqueous medium for 30 days. Under photoexcitation at λex 270 and 350 nm, the FA-CuNCs display strong blue fluorescence with an emission peak at 440 nm. The FA-CuNCs exhibit low cytotoxicity and favorable biocompatibility as demonstrated by an MTT assay. A cell viability of >80% is found when incubating HeLa cells for 20 h with FA-CuNCs at levels of up to 200 µg mL-1. The targeting capability of the FA-CuNCs is demonstrated by live cell imaging. It is shown that HeLa cells with over-expressed folate receptor are much brighter than A549 cells where the receptor is not over-expressed. This is further corroborated by the fact that the copper content in HeLa cells (1.5 pg/cell) is 6.5-fold higher than that of A549 cells (0.23 pg/cell), both measured after the same incubation time of 3 h. If free FA is introduced into the cell culture medium, the folate receptors will be preoccupied with FA, and this results in a significant decrease in the cellular uptake of the FA-CuNCs by HeLa cells. Graphical Abstract Biocompatible copper nanoclusters (CuNCs) coated with folic acid (FA) were prepared and are shown to be viable probes for the differentiation between FR-positive HeLa cells and FR-negative A549 cells.


Asunto(s)
Cobre/química , Receptores de Folato Anclados a GPI/genética , Ácido Fólico/química , Nanoestructuras/química , Imagen Óptica/métodos , Células A549 , Transporte Biológico , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/metabolismo , Expresión Génica , Células HeLa , Humanos , Agua/química
12.
ACS Appl Mater Interfaces ; 9(8): 6941-6949, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28177224

RESUMEN

A protein-stabilized multifunctional theranostic nanoplatform, gadolinium oxide-gold nanoclusters hybrid (Gd2O3-AuNCs), is constructed for multimodal imaging and drug delivery. The Gd2O3-AuNCs nanohybrid is developed by integrating Gd2O3 nanocrystals and gold nanoclusters into bovine serum albumin scaffold as a stabilizer. The nanohybrid exhibits favorable biocompatibility and is capable of enhancing the contrast in magnetic resonance and X-ray computed tomography imaging. Meanwhile, the integrated AuNCs component not only endows the nanohybrid to produce red fluorescence, but also sensitizes the generation of singlet oxygen (1O2) upon near-infrared laser stimulation at 808 nm. Bovine serum albumin surrounding the nanoparticles makes Gd2O3-AuNCs a brilliant carrier for the delivery of indocyanine green (ICG). ICG loading endows the Gd2O3-AuNCs-ICG nanocomposite with a near-infrared fluorescence imaging capability, and improves its photodynamic property and photothermal capability. Ultimately, further experiments have demonstrated that Gd2O3-AuNCs-ICG nanocomposite is a promising theranostic agent for image guided cancer therapy.


Asunto(s)
Gadolinio/química , Oro , Imagen Multimodal , Nanomedicina Teranóstica
13.
Langmuir ; 32(46): 12221-12229, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27805819

RESUMEN

Tunable fluorescent emission and applications in both in vitro and in vivo imaging of hydrophobic carbon nanodots (CNDs) with rapid penetration capability are reported. The hydrophobic CNDs are prepared via hydrothermal treatment of ionic liquid 1-ethyl-3-methylimidazolium bromide and exhibit excitation-dependent photoluminescence behavior along with a red-shift in the excitation/emission maxima with concentration. The quantum yields of the as-prepared CNDs are in the range of 2.5-4.8% at an excitation wavelength of 300-600 nm. The rapid penetration behavior (within 1 min) of CNDs into the cell membrane significantly reduces the sample treatment time and avoids potential fluorescence quenching induced by the interaction between CNDs and samples. A co-location study reveals that the hydrophobic CNDs are distributed mainly in the lysosome. The potentials of the hydrophobic CNDs as fluorescent probe in in vitro and in vivo imaging are well demonstrated by the labeling of HeLa cells, MCF-7 cells, A549 cells, and Kunming mice.


Asunto(s)
Carbono/química , Colorantes Fluorescentes , Nanopartículas/química , Células A549 , Animales , Membrana Celular/metabolismo , Células HeLa , Humanos , Células MCF-7 , Ratones , Microscopía Fluorescente
14.
J Mater Chem B ; 4(44): 7130-7137, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-32263650

RESUMEN

Carbon dots are prepared using a green hydrothermal approach with dehydrated shiitake mushroom as the sole carbon source without any additives (these carbon dots are shortly termed as MCDs). Carbonization, surface functionalization and nitrogen doping are involved in the hydrothermal treatment and no further modification or surface passivation is necessary. The derived MCDs are nitrogen-doped, oxygen-rich with hydroxyl, carboxyl and amine groups, with a diameter of ca. 4.2 nm. MCDs exhibit cell permeable properties and a distinct pH-sensitive/excitation-dependent photoluminescence emission feature within pH 4.0-8.0, providing an optical probe for intracellular pH sensing and multicolor imaging of live HeLa cells. MCDs also show a strong fluorescence response to hemin, which facilitates sensitive fluorescent sensing of hemin with a detection limit of 120 nmol L-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...