Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418088

RESUMEN

Detecting structural variants (SVs) in whole-genome sequencing poses significant challenges. We present a protocol for variant calling, merging, genotyping, sensitivity analysis, and laboratory validation for generating a high-quality SV call set in whole-genome sequencing from the Alzheimer's Disease Sequencing Project comprising 578 individuals from 111 families. Employing two complementary pipelines, Scalpel and Parliament, for SV/indel calling, we assessed sensitivity through sample replicates (N = 9) with in silico variant spike-ins. We developed a novel metric, D-score, to evaluate caller specificity for deletions. The accuracy of deletions was evaluated by Sanger sequencing. We generated a high-quality call set of 152,301 deletions of diverse sizes. Sanger sequencing validated 114 of 146 detected deletions (78.1%). Scalpel excelled in accuracy for deletions ≤100 bp, whereas Parliament was optimal for deletions >900 bp. Overall, 83.0% and 72.5% of calls by Scalpel and Parliament were validated, respectively, including all 11 deletions called by both Parliament and Scalpel between 101 and 900 bp. Our flexible protocol successfully generated a high-quality deletion call set and a truth set of Sanger sequencing-validated deletions with precise breakpoints spanning 1-17,000 bp.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Secuenciación Completa del Genoma/métodos
2.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930023

RESUMEN

Local associations refer to spatial-temporal correlations that emerge from the biological realm, such as time-dependent gene co-expression or seasonal interactions between microbes. One can reveal the intricate dynamics and inherent interactions of biological systems by examining the biological time series data for these associations. To accomplish this goal, local similarity analysis algorithms and statistical methods that facilitate the local alignment of time series and assess the significance of the resulting alignments have been developed. Although these algorithms were initially devised for gene expression analysis from microarrays, they have been adapted and accelerated for multi-omics next generation sequencing datasets, achieving high scientific impact. In this review, we present an overview of the historical developments and recent advances for local similarity analysis algorithms, their statistical properties, and real applications in analyzing biological time series data. The benchmark data and analysis scripts used in this review are freely available at http://github.com/labxscut/lsareview.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Factores de Tiempo , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Benchmarking
3.
Front Microbiol ; 14: 1050130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065122

RESUMEN

Phylogenetic tools are fundamental to the studies of evolutionary relationships. In this paper, we present Ksak, a novel high-throughput tool for alignment-free phylogenetic analysis. Ksak computes the pairwise distance matrix between molecular sequences, using seven widely accepted k-mer based distance measures. Based on the distance matrix, Ksak constructs the phylogenetic tree with standard algorithms. When benchmarked with a golden standard 16S rRNA dataset, Ksak was found to be the most accurate tool among all five tools compared and was 19% more accurate than ClustalW2, a high-accuracy multiple sequence aligner. Above all, Ksak was tens to hundreds of times faster than ClustalW2, which helps eliminate the computation limit currently encountered in large-scale multiple sequence alignment. Ksak is freely available at https://github.com/labxscut/ksak.

4.
Gigascience ; 7(7)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982625

RESUMEN

Background: Simulating genome sequence data with variant features facilitates the development and benchmarking of structural variant analysis programs. However, there are only a few data simulators that provide structural variants in silico and even fewer that provide variants with different allelic fraction and haplotypes. Findings: We developed SVEngine, an open-source tool to address this need. SVEngine simulates next-generation sequencing data with embedded structural variations. As input, SVEngine takes template haploid sequences (FASTA) and an external variant file, a variant distribution file, and/or a clonal phylogeny tree file (NEWICK) as input. Subsequently, it simulates and outputs sequence contigs (FASTAs), sequence reads (FASTQs), and/or post-alignment files (BAMs). All of the files contain the desired variants, along with BED files containing the ground truth. SVEngine's flexible design process enables one to specify size, position, and allelic fraction for deletions, insertions, duplications, inversions, and translocations. Finally, SVEngine simulates sequence data that replicate the characteristics of a sequencing library with mixed sizes of DNA insert molecules. To improve the compute speed, SVEngine is highly parallelized to reduce the simulation time. Conclusions: We demonstrated the versatile features of SVEngine and its improved runtime comparisons with other available simulators. SVEngine's features include the simulation of locus-specific variant frequency designed to mimic the phylogeny of cancer clonal evolution. We validated SVEngine's accuracy by simulating genome-wide structural variants of NA12878 and a heterogeneous cancer genome. Our evaluation included checking various sequencing mapping features such as coverage change, read clipping, insert size shift, and neighboring hanging read pairs for representative variant types. Structural variant callers Lumpy and Manta and tumor heterogeneity estimator THetA2 were able to perform realistically on the simulated data. SVEngine is implemented as a standard Python package and is freely available for academic use .


Asunto(s)
Evolución Clonal , Variación Estructural del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Neoplasias/patología , Análisis de Secuencia de ADN , Algoritmos , Alelos , Reacciones Falso Positivas , Frecuencia de los Genes , Biblioteca de Genes , Variación Genética , Genoma Humano , Genómica , Haplotipos , Humanos , Filogenia , Programas Informáticos
5.
BMC Genomics ; 18(Suppl 1): 1041, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28198672

RESUMEN

BACKGROUND: Periodontitis is an inflammatory disease affecting the tissues supporting teeth (periodontium). Integrative analysis of metagenomic samples from multiple periodontitis studies is a powerful way to examine microbiota diversity and interactions within host oral cavity. METHODS: A total of 43 subjects were recruited to participate in two previous studies profiling the microbial community of human subgingival plaque samples using shotgun metagenomic sequencing. We integrated metagenomic sequence data from those two studies, including six healthy controls, 14 sites representative of stable periodontitis, 16 sites representative of progressing periodontitis, and seven periodontal sites of unknown status. We applied phylogenetic diversity, differential abundance, and network analyses, as well as clustering, to the integrated dataset to compare microbiological community profiles among the different disease states. RESULTS: We found alpha-diversity, i.e., mean species diversity in sites or habitats at a local scale, to be the single strongest predictor of subjects' periodontitis status (P < 0.011). More specifically, healthy subjects had the highest alpha-diversity, while subjects with stable sites had the lowest alpha-diversity. From these results, we developed an alpha-diversity logistic model-based naive classifier able to perfectly predict the disease status of the seven subjects with unknown periodontal status (not used in training). Phylogenetic profiling resulted in the discovery of nine marker microbes, and these species are able to differentiate between stable and progressing periodontitis, achieving an accuracy of 94.4%. Finally, we found that the reduction of negatively correlated species is a notable signature of disease progression. CONCLUSIONS: Our results consistently show a strong association between the loss of oral microbiota diversity and the progression of periodontitis, suggesting that metagenomics sequencing and phylogenetic profiling are predictive of early periodontitis, leading to potential therapeutic intervention. Our results also support a keystone pathogen-mediated polymicrobial synergy and dysbiosis (PSD) model to explain the etiology of periodontitis. Apart from P. gingivalis, we identified three additional keystone species potentially mediating the progression of periodontitis progression based on pathogenic characteristics similar to those of known keystone pathogens.


Asunto(s)
Biodiversidad , Biología Computacional/métodos , Metagenoma , Metagenómica/métodos , Microbiota , Periodontitis/microbiología , Algoritmos , Estudios de Casos y Controles , Análisis por Conglomerados , Placa Dental , Encía/microbiología , Humanos , Boca/microbiología , Filogenia , Flujo de Trabajo
6.
ISME J ; 10(7): 1669-81, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26905627

RESUMEN

Disruption of healthy microbial communities has been linked to numerous diseases, yet microbial interactions are little understood. This is due in part to the large number of bacteria, and the much larger number of interactions (easily in the millions), making experimental investigation very difficult at best and necessitating the nascent field of computational exploration through microbial correlation networks. We benchmark the performance of eight correlation techniques on simulated and real data in response to challenges specific to microbiome studies: fractional sampling of ribosomal RNA sequences, uneven sampling depths, rare microbes and a high proportion of zero counts. Also tested is the ability to distinguish signals from noise, and detect a range of ecological and time-series relationships. Finally, we provide specific recommendations for correlation technique usage. Although some methods perform better than others, there is still considerable need for improvement in current techniques.


Asunto(s)
Bacterias/genética , Benchmarking/estadística & datos numéricos , Interacciones Microbianas , Microbiota , Biología Computacional , Humanos , Modelos Estadísticos , ARN Ribosómico 16S/genética , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...