Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589686

RESUMEN

Cardiopulmonary progenitor cells (CPPs) constitute a minor subpopulation of cells that are commonly associated with heart and lung morphogenesis during embryonic development but completely subside after birth. This fact offers the possibility for the treatment of pulmonary heart disease (PHD), in which the lung and heart are both damaged. A reliable source of CPPs is urgently needed. In this study, we reprogrammed human cardiac fibroblasts (HCFs) into CPP-like cells (or induced CPPs, iCPPs) and evaluated the therapeutic potential of iCPP-derived exosomes for acute lung injury (ALI). iCPPs were created in passage 3 primary HCFs by overexpressing GLI1, WNT2, ISL1 and TBX5 (GWIT). Exosomes were isolated from the culture medium of passage 6-8 GWIT-iCPPs. A mouse ALI model was established by intratracheal instillation of LPS. Four hours after LPS instillation, ALI mice were treated with GWIT-iCPP-derived exosomes (5 × 109, 5 × 1010 particles/mL) via intratracheal instillation. We showed that GWIT-iCPPs could differentiate into cell lineages, such as cardiomyocyte-like cells, endothelial cells, smooth muscle cells and alveolar epithelial cells, in vitro. Transcription analysis revealed that GWIT-iCPPs have potential for heart and lung development. Intratracheal instillation of iCPP-derived exosomes dose-dependently alleviated LPS-induced ALI in mice by attenuating lung inflammation, promoting endothelial function and restoring capillary endothelial cells and the epithelial cells barrier. This study provides a potential new method for the prevention and treatment of cardiopulmonary injury, especially lung injury, and provides a new cell model for drug screening.

2.
Cell Prolif ; 57(5): e13593, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38185757

RESUMEN

Ischemic heart disease, especially myocardial infarction (MI), is one of the leading causes of death worldwide, and desperately needs effective treatments, such as cell therapy. Cardiopulmonary progenitors (CPPs) are stem cells for both heart and lung, but their repairing role in damaged heart is still unknown. Here, we obtained CPPs from E9.5 mouse embryos, maintained their stemness while expanding, and identified their characteristics by scRNA-seq, flow cytometry, quantitative reverse transcription-polymerase chain reaction, and differentiation assays. Moreover, we employed mouse MI model to investigate whether CPPs could repair the injured heart. Our data identified that CPPs exhibit hybrid fibroblastic, endothelial, and mesenchymal state, and they could differentiate into cell lineages within the cardiopulmonary system. Moreover, intramyocardial injection of CPPs improves cardiac function through CPPs exosomes (CPPs-Exo) by promotion of cardiomyocytic proliferation and vascularization. To uncover the underlying mechanism, we used miRNA-seq, bulk RNA-seq, and bioinformatic approaches, and found the highly expressed miR-27b-3p in CPPs-Exo and its target gene Sik1, which can influence the transcriptional activity of CREB1. Therefore, we postulate that CPPs facilitate cardiac repair partially through the SIK1-CREB1 axis via exosomal miR-27b-3p. Our study offers a novel insight into the role of CPPs-Exo in heart repair and highlights the potential of CPPs-Exo as a promising therapeutic strategy for MI.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Exosomas , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Células Madre/metabolismo , Células Madre/citología , Proliferación Celular , Diferenciación Celular , Pulmón/metabolismo , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/citología
3.
Biochem Biophys Rep ; 37: 101591, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38074998

RESUMEN

Intimal hyperplasia is one of the common pathophysiological foundations of vascular remodeling including restenosis and atherosclerosis. The Rho GTPase activating protein 24 (ARHGAP24) has been reported as a tumor suppressor in multiple cancers. Nevertheless, the role of ARHGAP24 in intimal hyperplasia is unclear. Interestingly, our results showed that ARHGAP24 was significantly up-regulated in dedifferentiated VSMC in vitro and vivo, which suggested that ARHGAP24 could promote VSMC dedifferentiation and proliferation. Knockdown of ARHGAP24 effectively inhibited VSMC dedifferentiation and proliferation in the absence and present of PDGF-BB, which might inactivate both ATK and ERK1/2 signaling pathways. Moreover, AAV9-mediated silencing of Arhgap24 also alleviates VSMC dedifferentiation and proliferation in the wire-injured mouse femoral arteries, contributing to reducing neointima formation. AAV9-mediated overexpression of Arhgap24 exacerbates intimal hyperplasia. We demonstrate that decreased ARHGAP24 expression restrained VSMC proliferation and dedifferentiation possibly by inactivating both AKT and ERK1/2 signaling pathways, which may provide a potential therapeutic strategy for diseases associated with intimal hyperplasia including restenosis and atherosclerosis.

4.
Int Immunopharmacol ; 113(Pt A): 109392, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36461594

RESUMEN

BACKGROUND: One of the common pathophysiological basis of atherosclerosis is intimal hyperplasia. ATP citrate lyase (ACLY) has been reported as a promising therapeutic target for treatment of dyslipidemia and atherosclerosis. However, the role of ACLY in intimal hyperplasia has yet to be clarified. METHODS: The current investigation studies the molecular effects of ACLY and bempedoic acid, an ACLY inhibitor, on platelet-derived growth factor (PDGF)-induced primary human aortic smooth muscle cells (HASMCs) proliferation in vitro and on femoral arterial wire-injured neointimal hyperplasia in mouse in vivo. The role of ACLY in intimal hyperplasia was further investigated in mice treated with bempedoic acid. Cell proliferation was measured by CCK8 and BrdU assays. We explored further mechanisms using western blot, qPCR and immunofluorescence. RESULTS: We found that ACLY was significantly increased in dedifferentiated VSMC in vitro and vivo. Bempedoic acid which can inhibit ACLY expression effectively blocked PDGF-induced VSMC proliferation and dedifferentiation by activating AMPK/ACC signaling pathway. Moreover, bempedoic acid also attenuated VSMC proliferation and inhibited VSMC dedifferentiation in the wire-injured mouse femoral arteries, resulting in reduced neointima formation. CONCLUSIONS: We demonstrates that bempedoic acid reduces ACLY expression to restrain VSMC proliferation and dedifferentiation by activating AMPK/ACC signaling pathway, which may provide a potential therapeutic strategy for diseases associated with intimal hyperplasia including restenosis and atherosclerosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aterosclerosis , Humanos , Ratones , Animales , ATP Citrato (pro-S)-Liasa , Hiperplasia/tratamiento farmacológico , Inhibidores Enzimáticos , Transducción de Señal , Aciltransferasas , Factor de Crecimiento Derivado de Plaquetas
5.
Nat Cardiovasc Res ; 1(8): 732-747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967457

RESUMEN

Platelets have emerged as key inflammatory cells implicated in the pathology of sepsis, but their contributions to rapid clinical deterioration and dysregulated inflammation have not been defined. Here, we show that the incidence of thrombocytopathy and inflammatory cytokine release was significantly increased in patients with severe sepsis. Platelet proteomic analysis revealed significant upregulation of gasdermin D (GSDMD). Using platelet-specific Gsdmd-deficient mice, we demonstrated a requirement for GSDMD in triggering platelet pyroptosis in cecal ligation and puncture (CLP)-induced sepsis. GSDMD-dependent platelet pyroptosis was induced by high levels of S100A8/A9 targeting toll-like receptor 4 (TLR4). Pyroptotic platelet-derived oxidized mitochondrial DNA (ox-mtDNA) potentially promoted neutrophil extracellular trap (NET) formation, which contributed to platelet pyroptosis by releasing S100A8/A9, forming a positive feedback loop that led to the excessive release of inflammatory cytokines. Both pharmacological inhibition using Paquinimod and genetic ablation of the S100A8/A9-TLR4 signaling axis improved survival in mice with CLP-induced sepsis by suppressing platelet pyroptosis.

6.
J Nanobiotechnology ; 20(1): 335, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842662

RESUMEN

BACKGROUND: Cytomegalovirus (CMV) pneumonia is a major cause of morbidity and mortality in immunodeficiency individuals, including transplant recipients and Acquired Immune Deficiency Syndrome patients. Antiviral drugs ganciclovir (GCV) and phosphonoformate (PFA) are first-line agents for pneumonia caused by herpesvirus infection. However, the therapy suffers from various limitations such as low efficiency, drug resistance, toxicity, and lack of specificity. METHODS: The antiviral drugs GCV and PFA were loaded into the pH-responsive nanoparticles fabricated by poly(lactic-co-glycolic acid) (PLGA) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and further coated with cell membranes derived from bone marrow mesenchymal stem cells to form artificial stem cells, namely MPDGP. We evaluated the viral suppression effects of MPDGP in vitro and in vivo. RESULTS: MPDGP showed significant inflammation tropism and efficient suppression of viral replication and virus infection-associated inflammation in the CMV-induced pneumonia model. The synergistic effects of the combination of viral DNA elongation inhibitor GCV and viral DNA polymerase inhibitor PFA on suppressing the inflammation efficiently. CONCLUSION: The present study develops a novel therapeutic intervention using artificial stem cells to deliver antiviral drugs at inflammatory sites, which shows great potential for the targeted treatment of pneumonia. To our best knowledge, we are the first to fabricate this kind of artificial stem cell to deliver antiviral drugs for pneumonia treatment.


Asunto(s)
Antivirales , Sistema de Administración de Fármacos con Nanopartículas , Neumonía/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Citomegalovirus , Infecciones por Citomegalovirus/tratamiento farmacológico , Ácidos Grasos Monoinsaturados/química , Foscarnet/farmacología , Foscarnet/uso terapéutico , Ganciclovir/farmacología , Ganciclovir/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Compuestos de Amonio Cuaternario/química , Células Madre
7.
Circulation ; 143(4): 354-371, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33207953

RESUMEN

BACKGROUND: Aberrant expression of circular RNA contributes to human diseases. Circular RNAs regulate gene expression by sequestering specific microRNAs. In this study, we investigated whether circMAP3K5 (circular mitogen-activated protein kinase 5) could act as a competing endogenous microRNA-22-3p (miR-22-3p) sponge and regulate neointimal hyperplasia. METHODS: Circular RNA profiling from genome-wide RNA sequencing data was compared between human coronary artery smooth muscle cells (SMCs) treated with or without platelet-derived growth factor. Expression levels of circMAP3K5 were assessed in human coronary arteries from autopsies on patients with dilated cardiomyopathy or coronary heart disease. The role of circMAP3K5 in intimal hyperplasia was further investigated in mice with adeno-associated virus 9-mediated circMAP3K5 transfection. SMC-specific Tet2 (ten-eleven translocation-2) knockout mice and global miR-22-3p knockout mice were used to delineate the mechanism by which circMAP3K5 attenuated neointimal hyperplasia using the femoral arterial wire injury model. RESULTS: RNA sequencing demonstrated that treatment with platelet-derived growth factor-BB significantly reduced expression of circMAP3K5 in human coronary artery SMCs. Wire-injured mouse femoral arteries and diseased arteries from patients with coronary heart disease (where platelet-derived growth factor-BB is increased) confirmed in vivo downregulation of circMAP3K5 associated with injury and disease. Lentivirus-mediated overexpression of circMAP3K5 inhibited the proliferation of human coronary artery SMCs. In vivo adeno-associated virus 9-mediated transfection of circMap3k5 (mouse circular Map3k5) specifically inhibited SMC proliferation in the wire-injured mouse arteries, resulting in reduced neointima formation. Using a luciferase reporter assay and RNA pull-down, circMAP3K5 (human circular MAP3K5) was found to sequester miR-22-3p, which, in turn, inhibited the expression of TET2. Both in vitro and in vivo results demonstrate that the loss of miR-22-3p recapitulated the antiproliferative effect of circMap3k5 on vascular SMCs. In SMC-specific Tet2 knockout mice, loss of Tet2 abolished the circMap3k5-mediated antiproliferative effect on vascular SMCs. CONCLUSIONS: We identify circMAP3K5 as a master regulator of TET2-mediated vascular SMC differentiation. Targeting the circMAP3K5/miR-22-3p/TET2 axis may provide a potential therapeutic strategy for diseases associated with intimal hyperplasia, including restenosis and atherosclerosis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , MicroARNs/metabolismo , Miocitos del Músculo Liso/patología , ARN Circular/metabolismo , Túnica Íntima/metabolismo , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Miocitos del Músculo Liso/metabolismo , ARN Circular/genética , Túnica Íntima/patología
8.
Front Physiol ; 11: 742, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733269

RESUMEN

Platelet hyperactivity is the hallmark of diabetes, and platelet activation plays a crucial role in diabetic vascular complications. Recent studies have shown that upon activation, platelet-derived miRNAs are incorporated into vascular smooth muscle cells (VSMCs), regulating the phenotypic switch of VSMC. Under diabetes, miRNA deficiency in platelets fails to regulate the VSMC phenotypic switch. Therefore, manipulation of platelet-derived miRNAs expression may provide therapeutic option for diabetic vascular complications. We seek to investigate the effect of calpeptin (calpain inhibitor) on the expression of miRNAs in diabetic platelets, and elucidate the downstream signaling pathway involved in protecting from neointimal formation in diabetic mice with femoral wire injury model. Using human cell and platelet coculture, we demonstrate that diabetic platelet deficient of miR-223 fails to suppress VSMC proliferation, while overexpression of miR-223 in diabetic platelets suppressed the proliferation of VSMC to protect intimal hyperplasia. Mechanistically, miR-223 directly targets the insulin-like growth factor-1 receptor (IGF-1R), which inhibits the phosphorylation of GSK3ß and activates the phosphorylation of AMPK, resulting in reduced VSMC dedifferentiation and proliferation. Using a murine model of vascular injury, we show that calpeptin restores the platelet expression of miR-223 in diabetes, and the horizontal transfer of platelet miR-223 into VSMCs inhibits VSMC proliferation in the injured artery by targeting the expression of IGF-1R. Our data present that the platelet-derived miR-223 suppressed VSMC proliferation via the regulation miR-223/IGF-1R/AMPK signaling pathways, and inhibition of calpain alleviates neointimal formation by restoring the expression of miR-223 in diabetic platelet.

9.
Front Cell Dev Biol ; 8: 323, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523947

RESUMEN

Previous studies have demonstrated that inhibition of canonical Wnt signaling promotes zebrafish heart regeneration and that treatment of injured heart tissue with the Wnt activator 6-bromo-indirubin-3-oxime (BIO) can impede cardiomyocyte proliferation. However, the mechanism by which Wnt signaling regulates downstream gene expression following heart injury remains unknown. In this study, we have demonstrated that inhibition of injury-induced myocardial wnt2bb and jnk1/creb1/c-jun signaling impedes heart repair following apex resection. The expression of jnk1, creb1, and c-jun were inhibited in wnt2bb dominant negative (dn) mutant hearts and elevated in wnt2bb-overexpresssing hearts following ventricular amputation. The overexpression of creb1 sufficiently rescued the dn-wnt2bb-induced phenotype of reduced nkx2.5 expression and attenuated heart regeneration. In addition, wnt2bb/jnk1/c-jun/creb1 signaling was increased in Tg(hsp70l:dkk1) transgenic fish, whereas it was inhibited in Tg(hsp70l:wnt8) transgenic fish, indicating that canonical Wnt and non-canonical Wnt antagonize each other to regulate heart regeneration. Overall, the results of our study demonstrate that the wnt2bb-mediated jnk1/c-jun/creb1 non-canonical Wnt pathway regulates cardiomyocyte proliferation.

10.
Circ Res ; 127(7): 855-873, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32597702

RESUMEN

RATIONALE: Kawasaki disease (KD) is an acute vasculitis of early childhood that can result in permanent coronary artery structural damage. The cause for this arterial vulnerability in up to 15% of patients with KD is unknown. Vascular smooth muscle cell dedifferentiation play a key role in the pathophysiology of medial damage and aneurysm formation, recognized arterial pathology in KD. Platelet hyperreactivity is also a hallmark of KD. We recently demonstrated that uptake of platelets and platelet-derived miRNAs influences vascular smooth muscle cell phenotype in vivo. OBJECTIVE: We set out to explore whether platelet/vascular smooth muscle cell (VSMC) interactions contribute to coronary pathology in KD. METHODS AND RESULTS: We prospectively recruited and studied 242 patients with KD, 75 of whom had documented coronary artery pathology. Genome-wide miRNA sequencing and droplet digital PCR demonstrated that patient with KD platelets have significant induction of miR-223 compared with healthy controls (HCs). Platelet-derived miR-223 has recently been shown to promote vascular smooth muscle quiescence and resolution of wound healing after vessel injury. Paradoxically, patients with KD with the most severe coronary pathology (giant coronary artery aneurysms) exhibited a lack of miR-223 induction. Hyperactive platelets isolated from patients with KD are readily taken up by VSMCs, delivering functional miR-223 into the VSMCs promoting VSMC differentiation via downregulation of PDGFRß (platelet-derived growth factor receptor ß). The lack of miR-223 induction in patients with severe coronary pathology leads to persistent VSMC dedifferentiation. In a mouse model of KD (Lactobacillus casei cell wall extract injection), miR-223 knockout mice exhibited increased medial thickening, loss of contractile VSMCs in the media, and fragmentation of medial elastic fibers compared with WT mice, which demonstrated significant miR-223 induction upon Lactobacillus casei cell wall extract challenge. The excessive arterial damage in the miR-223 knockout could be rescued by adoptive transfer of platelet, administration of miR-223 mimics, or the PDGFRß inhibitor imatinib mesylate. Interestingly, miR-223 levels progressively increase with age, with the lowest levels found in <5-year-old. This provides a basis for coronary pathology susceptibility in this very young cohort. CONCLUSIONS: Platelet-derived miR-223 (through PDGFRß inhibition) promotes VSMC differentiation and resolution of KD induced vascular injury. Lack of miR-223 induction leads to severe coronary pathology characterized by VSMC dedifferentiation and medial damage. Detection of platelet-derived miR-223 in patients with KD (at the time of diagnosis) may identify patients at greatest risk of coronary artery pathology. Moreover, targeting platelet miR-223 or VSMC PDGFRß represents potential therapeutic strategies to alleviate coronary pathology in KD. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Plaquetas/metabolismo , Enfermedad de la Arteria Coronaria/etiología , MicroARNs/sangre , MicroARNs/metabolismo , Síndrome Mucocutáneo Linfonodular/complicaciones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Adulto , Factores de Edad , Animales , Estudios de Casos y Controles , Células Cultivadas , Niño , Preescolar , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Síndrome Mucocutáneo Linfonodular/sangre , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Activación Plaquetaria , Estudios Prospectivos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Índice de Severidad de la Enfermedad , Transducción de Señal , Adulto Joven
11.
Front Neurosci ; 14: 591207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519354

RESUMEN

Seizures are among the most common neurological sequelae of stroke, and diabetes notably increases the incidence of post-ischemic seizures. Recent studies have indicated that Sestrin3 (SESN3) is a regulator of a proconvulsant gene network in human epileptic hippocampus. But the association of SESN3 and post-ischemic seizures in diabetes remains unclear. The present study aimed to reveal the involvement of SESN3 in seizures following transient cerebral ischemia in diabetes. Diabetes was induced in adult male mice and rats via intraperitoneal injection of streptozotocin (STZ). Forebrain ischemia (15 min) was induced by bilateral common carotid artery occlusion, the 2-vessel occlusion (2VO) in mice and 4-vessel occlusion (4VO) in rats. Our results showed that 59% of the diabetic wild-type mice developed seizures after ischemia while no seizures were observed in non-diabetic mice. Although no apparent cell death was detected in the hippocampus of seizure mice within 24 h after the ischemic insult, the expression of SESN3 was significantly increased in seizure diabetic mice after ischemia. The post-ischemic seizure incidence significantly decreased in SESN3 knockout mice. Furthermore, all diabetic rats suffered from post-ischemic seizures and non-diabetic rats have no seizures. Electrophysiological recording showed an increased excitatory synaptic transmission and intrinsic membrane excitability in dentate granule cells of the rat hippocampus, together with decreased I A currents and Kv4.2 expression levels. The above results suggest that SESN3 up-regulation may contribute to neuronal hyperexcitability and seizure generation in diabetic animals after ischemia. Further studies are needed to explore the molecular mechanism of SESN3 in seizure generation after ischemia in diabetic conditions.

12.
J Clin Invest ; 129(3): 1372-1386, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645204

RESUMEN

Upon arterial injury, endothelial denudation leads to platelet activation and delivery of multiple agents (e.g., TXA2, PDGF), promoting VSMC dedifferentiation and proliferation (intimal hyperplasia) during injury repair. The process of resolution of vessel injury repair, and prevention of excessive repair (switching VSMCs back to a differentiated quiescent state), is poorly understood. We now report that internalization of APs by VSMCs promotes resolution of arterial injury by switching on VSMC quiescence. Ex vivo and in vivo studies using lineage tracing reporter mice (PF4-cre × mT/mG) demonstrated uptake of GFP-labeled platelets (mG) by mTomato red-labeled VSMCs (mT) upon arterial wire injury. Genome-wide miRNA sequencing of VSMCs cocultured with APs identified significant increases in platelet-derived miR-223. miR-223 appears to directly target PDGFRß (in VSMCs), reversing the injury-induced dedifferentiation. Upon arterial injury, platelet miR-223-KO mice exhibited increased intimal hyperplasia, whereas miR-223 mimics reduced intimal hyperplasia. Diabetic mice with reduced expression of miR-223 exhibited enhanced VSMC dedifferentiation and proliferation and increased intimal hyperplasia. Our results suggest that horizontal transfer of platelet-derived miRNAs into VSMCs provides a novel mechanism for regulating VSMC phenotypic switching. Platelets thus play a dual role in vascular injury repair, initiating an immediate repair process and, concurrently, a delayed process to prevent excessive repair.


Asunto(s)
Arterias , Plaquetas/metabolismo , Diferenciación Celular , Proliferación Celular , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Regeneración , Animales , Arterias/lesiones , Arterias/fisiología , Plaquetas/patología , Línea Celular , Diabetes Mellitus Experimental , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Túnica Íntima/metabolismo , Túnica Íntima/patología
13.
Front Cardiovasc Med ; 5: 29, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670887

RESUMEN

Platelet is an anucleate cell containing abundant messenger RNAs and microRNAs (miRNAs), and their functional roles in hemostasis and inflammation remain elusive. Accumulating evidence has suggested that platelets can actively transfer RNAs to hepatocytes, vascular cells, macrophages, and tumor cells. The incorporated mRNAs are translated into proteins, and miRNAs were found to regulate the gene expression, resulting in the functional change of the recipient cells. This novel intercellular communication opens up a new avenue for the pathophysiological role of platelet in platelet-associated vascular diseases. Therefore, understanding the underlying mechanism and identification of the platelet miRNAs involved in this biological process would provide novel diagnostic and therapeutic targets for cardiovascular diseases.

14.
Front Cell Neurosci ; 11: 288, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021742

RESUMEN

Glutamate excitotoxicity plays an important role in neuronal death after ischemia. However, all clinical trials using glutamate receptor inhibitors have failed. This may be related to the evidence that activation of different subunit of NMDA receptor will induce different effects. Many studies have shown that activation of the intrasynaptic NR2A subunit will stimulate survival signaling pathways, whereas upregulation of extrasynaptic NR2B will trigger apoptotic pathways. A Lycium barbarum polysaccharide (LBP) is a mixed compound extracted from Lycium barbarum fruit. Recent studies have shown that LBP protects neurons against ischemic injury by anti-oxidative effects. Here we first reported that the effect of LBP against ischemic injury can be achieved by regulating NR2B and NR2A signaling pathways. By in vivo study, we found LBP substantially reduced CA1 neurons from death after transient global ischemia and ameliorated memory deficit in ischemic rats. By in vitro study, we further confirmed that LBP increased the viability of primary cultured cortical neurons when exposed to oxygen-glucose deprivation (OGD) for 4 h. Importantly, we found that LBP antagonized increase in expression of major proteins in the NR2B signal pathway including NR2B, nNOS, Bcl-2-associated death promoter (BAD), cytochrome C (cytC) and cleaved caspase-3, and also reduced ROS level, calcium influx and mitochondrial permeability after 4 h OGD. In addition, LBP prevented the downregulation in the expression of NR2A, pAkt and pCREB, which are important cell survival pathway components. Furthermore, LBP attenuated the effects of a NR2B co-agonist and NR2A inhibitor on cell mortality under OGD conditions. Taken together, our results demonstrated that LBP is neuroprotective against ischemic injury by its dual roles in activation of NR2A and inhibition of NR2B signaling pathways, which suggests that LBP may be a superior therapeutic candidate for targeting glutamate excitotoxicity for the treatment of ischemic stroke.

15.
Neuroscience ; 327: 64-78, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27090818

RESUMEN

Excess glutamate release from the presynaptic membrane has been thought to be the major cause of ischemic neuronal death. Although both CA1 and CA3 pyramidal neurons receive presynaptic glutamate input, transient cerebral ischemia induces CA1 neurons to die while CA3 neurons remain relatively intact. This suggests that changes in the properties of pyramidal cells may be the main cause related to ischemic neuronal death. Our previous studies have shown that the densities of dendritic spines and asymmetric synapses in the CA1 area are increased at 12h and 24h after ischemia. In the present study, we investigated changes in synaptic structures in the CA3 area and compared the expression of glutamate receptors in the CA1 and CA3 hippocampal regions of rats after ischemia. Our results demonstrated that the NR2B/NR2A ratio became larger after ischemia although the expression of both the NR2B subunit (activation of apoptotic pathway) and NR2A subunit (activation of survival pathway) decreased in the CA1 area from 6h to 48h after reperfusion. Furthermore, expression of the GluR2 subunit (calcium impermeable) of the AMPA receptor class significantly decreased while the GluR1 subunit (calcium permeable) remained unchanged at the same examined reperfusion times, which subsequently caused an increase in the GluR1/GluR2 ratio. Despite these notable differences in subunit expression, there were no obvious changes in the density of synapses or expression of NMDAR and AMPAR subunits in the CA3 area after ischemia. These results suggest that delayed CA1 neuronal death may be related to the dramatic fluctuation in the synaptic structure and relative upregulation of NR2B and GluR1 subunits induced by transient global ischemia.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Ataque Isquémico Transitorio/metabolismo , Plasticidad Neuronal/fisiología , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Animales , Muerte Celular/fisiología , Ácido Glutámico/metabolismo , Masculino , Ratas Wistar , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Brain Res ; 1643: 18-26, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27125597

RESUMEN

Seizures are among the most common neurological sequelae of stroke, and ischemic insult in diabetes notably increases the incidence of seizures. Recent studies indicated that autophagy influences the outcome of stroke and involved in epileptogenesis. However, the association of autophagy and post-ischemic seizures in diabetes remains unclear. The present study aimed to reveal the involvement of autophagy in the seizures following cerebral ischemia in diabetes. Diabetes was induced in adult male Wistar rats by intraperitoneal injection of streptozotocin (STZ). The diabetic rats were subjected to transient forebrain ischemia. The neuronal damage was assessed using hematoxylin-eosin staining. Western blotting and immunohistochemistry were performed to investigate the alteration of autophagy marker microtubule-associated protein light chain 1B (LC3B). The results showed that all diabetic animals developed seizures after ischemia. However, no apparent cell death was observed in the hippocampus of seizure rats 12h after the insult. The expression of LC3B was significantly enhanced in naïve animals after ischemia and was further increased in diabetic animals after ischemia. Immunofluorescence double-labeling study indicated that LC3B was mainly increased in neurons. Our study demonstrated, for the first time, that autophagy activity is significantly increased in diabetic animals with ischemia-induced seizures. Further studies are needed to explore the role of autophagy in seizure generation after ischemia in diabetic conditions.


Asunto(s)
Autofagia , Isquemia Encefálica/metabolismo , Complicaciones de la Diabetes/metabolismo , Convulsiones/metabolismo , Animales , Isquemia Encefálica/complicaciones , Modelos Animales de Enfermedad , Hipocampo/patología , Hipocampo/fisiología , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/fisiología , Ratas , Ratas Wistar , Convulsiones/etiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...