Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 283: 116852, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142049

RESUMEN

Dithiocarbamates have been widely used in various industrial applications, such as insecticides (ferbam) or drug (disulfiram). This study explored the inhibitory effects of dithiocarbamates on human and rat gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD) and investigated the structure-activity relationship and mechanistic insights. The inhibitory activity of six dithiocarbamates and thiourea on the conversion of pregnenolone to progesterone was evaluated using human KGN cell and rat testicular microsomes, with subsequent progesterone measurement using HPLC-MS/MS. The study found that among the tested compounds disulfiram, ferbam, and thiram exhibited significant inhibitory activity against human 3ß-HSD2 and rat 3ß-HSD1, with ferbam demonstrating the highest potency. The mode of action for these compounds was characterized, showing mixed inhibition for human 3ß-HSD2 and mixed/noncompetitive inhibition for rat 3ß-HSD1. Additionally, it was observed that dithiothreitol dose-dependently reversed the inhibitory effects of dithiocarbamates on both human and rat gonadal 3ß-HSD enzymes. The study also delved into the penetration of these dithiocarbamates through the human KGN cell membrane and their impact on progesterone production, highlighting their potency in inhibiting human 3ß-HSD2. Furthermore, bivariate correlation analysis revealed a positive correlation of LogP (lipophilicity) with IC50 values for both enzymes. Docking analysis indicated that dithiocarbamates bind to NAD+ and steroid-binding sites, with some interactions with cysteine residues. In conclusion, this study provides valuable insights into the structure-activity relationship and mechanistic aspects of dithiocarbamates as inhibitors of human and rat gonadal 3ß-HSDs, suggesting that these compounds likely exert their inhibitory effects through binding to cysteine residues.

2.
Microb Cell Fact ; 23(1): 159, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822377

RESUMEN

BACKGROUND: Bacillus subtilis is widely used in industrial-scale riboflavin production. Previous studies have shown that targeted mutagenesis of the ribulose 5-phosphate 3-epimerase in B. subtilis can significantly enhance riboflavin production. This modification also leads to an increase in purine intermediate concentrations in the medium. Interestingly, B. subtilis exhibits remarkable efficiency in purine nucleoside synthesis, often exceeding riboflavin yields. These observations highlight the importance of the conversion steps from inosine-5'-monophosphate (IMP) to 2,5-diamino-6-ribosylamino-4(3 H)-pyrimidinone-5'-phosphate (DARPP) in riboflavin production by B. subtilis. However, research elucidating the specific impact of these reactions on riboflavin production remains limited. RESULT: We expressed the genes encoding enzymes involved in these reactions (guaB, guaA, gmk, ndk, ribA) using a synthetic operon. Introduction of the plasmid carrying this synthetic operon led to a 3.09-fold increase in riboflavin production compared to the control strain. Exclusion of gmk from the synthetic operon resulted in a 36% decrease in riboflavin production, which was further reduced when guaB and guaA were not co-expressed. By integrating the synthetic operon into the genome and employing additional engineering strategies, we achieved riboflavin production levels of 2702 mg/L. Medium optimization further increased production to 3477 mg/L, with a yield of 0.0869 g riboflavin per g of sucrose. CONCLUSION: The conversion steps from IMP to DARPP play a critical role in riboflavin production by B. subtilis. Our overexpression strategies have demonstrated their effectiveness in overcoming these limiting factors and enhancing riboflavin production.


Asunto(s)
Bacillus subtilis , Vías Biosintéticas , Ingeniería Metabólica , Purinas , Riboflavina , Riboflavina/biosíntesis , Riboflavina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Purinas/biosíntesis , Purinas/metabolismo , Ingeniería Metabólica/métodos , Operón , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38518984

RESUMEN

Benzophenone chemicals (BPs) have been developed to prevent the adverse effects of UV radiation and they are widely contaminated. 11ß-Hydroxysteroid dehydrogenase 1 (11ß-HSD1) catalyze the conversion of inactive glucocorticoid to active glucocorticoid, playing critical role in many physiological function. However, the direct effect of BPs on human, pig, rat, and mouse 11ß-HSD1 remains unclear. In this study, we screened the inhibitory strength of 12 BPs on 4 species, and performed the structure-activity relationship (SAR) and in silico docking analysis. The inhibitory potency of BPs was: for human 11ß-HSD1, BP6 (IC50 = 18.76 µM) > BP8 (40.84 µM) > BP (88.89 µM) > other BPs; for pig 11ß-HSD1, BP8 (45.57 µM) > BP6 (59.44 µM) > BP2 (65.12 µM) > BP (135.56 µM) > other BPs; for rat 11ß-HSD1, BP7 (67.17 µM) > BP (68.83 µM) > BP8 (133.04 µM) > other BPs; and for mouse 11ß-HSD1, BP8 (41.41 µM) > BP (50.61 µM) > other BPs. These BP chemicals were mixed/competitive inhibitors of these 11ß-HSD1 enzymes. The 2,2'-dihydroxy substitutions in two benzene rings play a key role in enhancing the effectiveness of inhibiting 11ß-HSD1, possibly via increasing hydrogen bond interactions. Docking analysis shows that these BPs bind to NADPH/glucocorticoid binding sites and forms hydrogen bonds with catalytic residues Ser and/or Tyr. In conclusion, this study demonstrates that BP chemicals can inhibit 11ß-HSD1 from 4 species, and there are subtle species-dependent difference in the inhibitory strength and structural variations of BPs.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Benzofenonas , Simulación del Acoplamiento Molecular , Animales , Benzofenonas/química , Benzofenonas/farmacología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/química , Humanos , Relación Estructura-Actividad , Ratas , Ratones , Porcinos , Protectores Solares/química , Protectores Solares/farmacología , Protectores Solares/toxicidad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Especificidad de la Especie , Rayos Ultravioleta
4.
Food Chem Toxicol ; 186: 114489, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360388

RESUMEN

Curcuminoids have many pharmacological effects. They or their metabolites may have side effects by suppressing 17ß-hydroxysteroid dehydrogenase 3 (17ß-HSD3). Herein, we investigated the inhibition of curcuminoids and their metabolites on human and rat 17ß-HSD3 and analyzed their structure-activity relationship (SAR) and performed in silico docking. Curcuminoids and their metabolites ranked in terms of IC50 values against human 17ß-HSD3 were bisdemethoxycurcumin (0.61 µM) > curcumin (8.63 µM) > demethoxycurcumin (9.59 µM) > tetrahydrocurcumin (22.04 µM) > cyclocurcumin (29.14 µM), and those against rat 17ß-HSD3 were bisdemethoxycurcumin (3.94 µM) > demethoxycurcumin (4.98 µM) > curcumin (9.62 µM) > tetrahydrocurcumin (45.82 µM) > cyclocurcumin (143.5 µM). The aforementioned chemicals were mixed inhibitors for both enzymes. Molecular docking analysis revealed that they bind to the domain between the androstenedione and NADPH active sites of 17ß-HSD3. Bivariate correlation analysis showed a positive correlation between LogP and pKa of curcumin derivatives with their IC50 values. Additionally, a 3D-QSAR analysis revealed that a pharmacophore model consisting of three hydrogen bond acceptor regions and one hydrogen bond donor region provided a better fit for bisdemethoxycurcumin compared to curcumin. In conclusion, curcuminoids and their metabolites possess the ability to inhibit androgen biosynthesis by directly targeting human and rat 17ß-HSD3. The inhibitory strength of these compounds is influenced by their lipophilicity and ionization characteristics.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Curcumina , Curcumina/análogos & derivados , Diarilheptanoides , Piranos , Humanos , Ratas , Animales , Curcumina/farmacología , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
5.
J Hazard Mater ; 465: 133252, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38128231

RESUMEN

Bisphenol A (BPA) is a widely used plastic material, but its potential endocrine disrupting effect has restricted its use. The BPA alternatives have raised concerns. This study aimed to compare inhibitory potencies of 11 BPA analogues on human and rat placental aromatase (CYP19A1). The inhibitory potency on human CYP19A1 ranged from bisphenol H (IC50, 0.93 µM) to tetramethyl BPA and tetrabromobisphenol S (ineffective at 100 µM) when compared to BPA (IC50, 73.48 µM). Most of them were mixed/competitive inhibitors and inhibited estradiol production in human BeWo cells. Molecular docking analysis showed all BPA analogues bind to steroid active site or in between steroid and heme of CYP19A1 and form a hydrogen bond with catalytic residue Met374. Pharmacophore analysis showed that there were 4 hydrophobic regions for BPA analogues, with bisphenol H occupying 4 regions. Bivariate correlation analysis showed that LogP (lipophilicity) and LogS (water solubility) of BPA analogues were correlated with their IC50 values. Computerized drug metabolism and pharmacokinetics analysis showed that bisphenol H, tetrabromobisphenol A, and tetrachlorobisphenol A had low solubility, which might explain their weaker inhibition on estradiol production on BeWo cells. In conclusion, BPA analogues mostly can inhibit CYP19A1 and the lipophilicity determines their inhibitory strength.


Asunto(s)
Aromatasa , Benceno , Fenoles , Animales , Femenino , Humanos , Embarazo , Ratas , Aromatasa/metabolismo , Compuestos de Bencidrilo/química , Citocromo P-450 CYP1A1/metabolismo , Estradiol , Simulación del Acoplamiento Molecular , Placenta/metabolismo , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA