Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38851299

RESUMEN

Protein-protein interactions (PPIs) are the basis of many important biological processes, with protein complexes being the key forms implementing these interactions. Understanding protein complexes and their functions is critical for elucidating mechanisms of life processes, disease diagnosis and treatment and drug development. However, experimental methods for identifying protein complexes have many limitations. Therefore, it is necessary to use computational methods to predict protein complexes. Protein sequences can indicate the structure and biological functions of proteins, while also determining their binding abilities with other proteins, influencing the formation of protein complexes. Integrating these characteristics to predict protein complexes is very promising, but currently there is no effective framework that can utilize both protein sequence and PPI network topology for complex prediction. To address this challenge, we have developed HyperGraphComplex, a method based on hypergraph variational autoencoder that can capture expressive features from protein sequences without feature engineering, while also considering topological properties in PPI networks, to predict protein complexes. Experiment results demonstrated that HyperGraphComplex achieves satisfactory predictive performance when compared with state-of-art methods. Further bioinformatics analysis shows that the predicted protein complexes have similar attributes to known ones. Moreover, case studies corroborated the remarkable predictive capability of our model in identifying protein complexes, including 3 that were not only experimentally validated by recent studies but also exhibited high-confidence structural predictions from AlphaFold-Multimer. We believe that the HyperGraphComplex algorithm and our provided proteome-wide high-confidence protein complex prediction dataset will help elucidate how proteins regulate cellular processes in the form of complexes, and facilitate disease diagnosis and treatment and drug development. Source codes are available at https://github.com/LiDlab/HyperGraphComplex.


Asunto(s)
Biología Computacional , Mapeo de Interacción de Proteínas , Biología Computacional/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo , Proteínas/química , Algoritmos , Mapas de Interacción de Proteínas , Bases de Datos de Proteínas , Humanos , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos
2.
Nat Commun ; 15(1): 4519, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806474

RESUMEN

Protein ubiquitination regulates a wide range of cellular processes. The degree of protein ubiquitination is determined by the delicate balance between ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase (DUB)-mediated deubiquitination. In comparison to the E3-substrate interactions, the DUB-substrate interactions (DSIs) remain insufficiently investigated. To address this challenge, we introduce a protein sequence-based ab initio method, TransDSI, which transfers proteome-scale evolutionary information to predict unknown DSIs despite inadequate training datasets. An explainable module is integrated to suggest the critical protein regions for DSIs while predicting DSIs. TransDSI outperforms multiple machine learning strategies against both cross-validation and independent test. Two predicted DUBs (USP11 and USP20) for FOXP3 are validated by "wet lab" experiments, along with two predicted substrates (AR and p53) for USP22. TransDSI provides new functional perspective on proteins by identifying regulatory DSIs, and offers clues for potential tumor drug target discovery and precision drug application.


Asunto(s)
Enzimas Desubicuitinizantes , Proteoma , Ubiquitinación , Humanos , Proteoma/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/genética , Aprendizaje Profundo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/química , Especificidad por Sustrato , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Aprendizaje Automático , Unión Proteica , Secuencia de Aminoácidos , Tioléster Hidrolasas
3.
Mol Cell Proteomics ; 23(1): 100686, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008179

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, ranking fourth in frequency. The relationship between metabolic reprogramming and immune infiltration has been identified as having a crucial impact on HCC progression. However, a deeper understanding of the interplay between the immune system and metabolism in the HCC microenvironment is required. In this study, we used a proteomic dataset to identify three immune subtypes (IM1-IM3) in HCC, each of which has distinctive clinical, immune, and metabolic characteristics. Among these subtypes, IM3 was found to have the poorest prognosis, with the highest levels of immune infiltration and T-cell exhaustion. Furthermore, IM3 showed elevated glycolysis and reduced bile acid metabolism, which was strongly correlated with CD8 T cell exhaustion and regulatory T cell accumulation. Our study presents the proteomic immune stratification of HCC, revealing the possible link between immune cells and reprogramming of HCC glycolysis and bile acid metabolism, which may be a viable therapeutic strategy to improve HCC immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteoma , Proteómica , Microambiente Tumoral , Ácidos y Sales Biliares
4.
Cells ; 12(19)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37830565

RESUMEN

Immunosuppressants are emerging as promising candidates for cancer therapy with lower cytotoxicity compared to traditional chemotherapy drugs; yet, the intrinsic side effects such as immunosuppression remain a critical concern. Herein, we introduce a photoactivatable antitumor immunosuppressant called dmBODIPY-FTY720 (BF) that shows no cytotoxicity but can be temporally and locally activated by deep-red light illumination to induce tumor cell apoptosis. To further reduce potential side effects, we integrate BF with another classic photosensitizer called methylene blue (MB) that is activated under the same wavelength of deep-red light (>650 nm) and successfully establish a red-light-activatable AND Boolean logic gate through a mechanism that we found to be synergetic apoptotic induction. At further decreased dosages, deep-red light illumination does not induce cell death in the presence of either BF or MB, but significant cancer cell death is triggered in the presence of both drugs. Therefore, the dosage of BF is further reduced, which will be highly beneficial to minimize any potential side effects of BF. This AND-gated strategy has been successfully applied in vivo for effective suppression of hepatocarcinoma tumors in living mice.


Asunto(s)
Fotoquimioterapia , Ratones , Animales , Línea Celular Tumoral , Inmunosupresores , Luz , Fármacos Fotosensibilizantes/farmacología
5.
Nat Commun ; 14(1): 1635, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964170

RESUMEN

Chemically induced proximity (CIP) is a powerful tool to study cellular functions. However with current CIP inducers it is difficult to directly modulate unligandable and endogenous targets, and therapeutic translational potential is also restricted. Herein, we combine CIP and chemical nanobody engineering and create cell-permeable small molecule-nanobody conjugate inducers of proximity (SNACIPs). The SNACIP inducer cRGT carrying a cyclic cell-penetrating peptide rapidly enters live cells and dimerizes eDHFR and GFP-variants. cRGT enables minute-scale, reversible, no-wash and dose-dependent control of cellular processes including signaling cascade, cargo transport and ferroptosis. Small-molecule motifs can also be installed via post-translational modifications. Therefore, latent-type SNACIPs including cRTC are designed that are functionally assembled inside living cells. cRTC contains a nanobody against an intrinsically disordered protein TPX2, a microtubule nucleation factor overexpressed in various cancers. Cancer cell proliferation is inhibited and tumor growth is suppressed in vivo. Hence, SNACIPs are valuable proximity inducers for regulating cellular functions.


Asunto(s)
Procesamiento Proteico-Postraduccional , Transducción de Señal
6.
J Neuroinflammation ; 20(1): 49, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829224

RESUMEN

BACKGROUND: Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) engraftment is a promising therapy for acute ischemic stroke (AIS). However, the harsh ischemic microenvironment limits the therapeutic efficacy of hUC-MSC therapy. Curcumin is an anti-inflammatory agent that could improve inflammatory microenvironment. However, whether it enhances the neuroprotective efficacy of hUC-MSC transplantation is still unknown. In the present study, we investigated the therapeutic efficacy and the possible mechanism of combined curcumin and hUC-MSC treatment in AIS. METHODS: Middle cerebral artery occlusion (MCAO) mice and oxygen glucose deprivation (OGD) microglia were administrated hUC-MSCs with or without curcumin. Neurological deficits assessment, brain water content and TTC were used to assess the therapeutic effects of combined treatment. To elucidate the mechanism, MCAO mice and OGD microglia were treated with AKT inhibitor MK2206, GSK3ß activator sodium nitroprusside (SNP), GSK3ß inhibitor TDZD-8 and Nrf2 gene knockout were used. Immunofluorescence, flow cytometric analysis, WB and RT-PCR were used to evaluate the microglia polarization and the expression of typical oxidative mediators, inflammatory cytokines and the AKT/GSK-3ß/ß-TrCP/Nrf2 pathway protein. RESULTS: Compared with the solo hUC-MSC-grafted or curcumin groups, combined curcumin-hUC-MSC therapy significantly improved the functional performance outcomes, diminished the infarct volumes and the cerebral edema. The combined treatment promoted anti-inflammatory microglia polarization via Nrf2 pathway and decreased the expression of ROS, oxidative mediators and pro-inflammatory cytokines, while elevating the expression of the anti-inflammatory cytokines. Nrf2 knockout abolished the antioxidant stress and anti-inflammation effects mediated with combined treatment. Moreover, the combined treatment enhanced the phosphorylation of AKT and GSK3ß, inhibited the ß-TrCP nucleus translocation, accompanied with Nrf2 activation in the nucleus. AKT inhibitor MK2206 activated GSK3ß and ß-TrCP and suppressed Nrf2 phosphorylation in nucleus, whereas MK2206 with the GSK3ß inhibitor TDZD-8 reversed these phenomena. Furthermore, combined treatment followed by GSK3ß inhibition with TDZD-8 restricted ß-TrCP nucleus accumulation, which facilitated Nrf2 expression. CONCLUSIONS: We have demonstrated that combined curcumin-hUC-MSC therapy exerts anti-inflammation and antioxidant stress efficacy mediated by anti-inflammatory microglia polarization via AKT/GSK-3ß/ß-TrCP/Nrf2 axis and an improved neurological function after AIS.


Asunto(s)
Curcumina , Accidente Cerebrovascular Isquémico , Trasplante de Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Glucógeno Sintasa Quinasa 3 beta , Proteínas Proto-Oncogénicas c-akt , Proteínas con Repetición de beta-Transducina , Factor 2 Relacionado con NF-E2 , Antioxidantes , Infarto de la Arteria Cerebral Media , Citocinas , Cordón Umbilical , Antiinflamatorios/farmacología
7.
Cells ; 11(16)2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-36010562

RESUMEN

Understanding gene functions and their associated abnormal phenotypes is crucial in the prevention, diagnosis and treatment against diseases. The Human Phenotype Ontology (HPO) is a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. However, the current HPO annotations are far from completion, and only a small fraction of human protein-coding genes has HPO annotations. Thus, it is necessary to predict protein-phenotype associations using computational methods. Protein sequences can indicate the structure and function of the proteins, and interacting proteins are more likely to have same function. It is promising to integrate these features for predicting HPO annotations of human protein. We developed GraphPheno, a semi-supervised method based on graph autoencoders, which does not require feature engineering to capture deep features from protein sequences, while also taking into account the topological properties in the protein-protein interaction network to predict the relationships between human genes/proteins and abnormal phenotypes. Cross validation and independent dataset tests show that GraphPheno has satisfactory prediction performance. The algorithm is further confirmed on automatic HPO annotation for no-knowledge proteins under the benchmark of the second Critical Assessment of Functional Annotation, 2013-2014 (CAFA2), where GraphPheno surpasses most existing methods. Further bioinformatics analysis shows that predicted certain phenotype-associated genes using GraphPheno share similar biological properties with known ones. In a case study on the phenotype of abnormality of mitochondrial respiratory chain, top prioritized genes are validated by recent papers. We believe that GraphPheno will help to reveal more associations between genes and phenotypes, and contribute to the discovery of drug targets.


Asunto(s)
Biología Computacional , Proteínas , Algoritmos , Biología Computacional/métodos , Humanos , Fenotipo , Mapas de Interacción de Proteínas
9.
Front Immunol ; 13: 841290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237278

RESUMEN

White matter lesions are an important pathological manifestation of cerebral small vessel disease, with inflammation playing a pivotal role in their development. The adenosine A2a receptor (ADORA2A) is known to inhibit the inflammation mediated by microglia, but its effect on astrocytes is unknown. Additionally, although the level of YKL-40 (expressed mainly in astrocytes) has been shown to be elevated in the model of white matter lesions induced by chronic cerebral hypoperfusion, the specific regulatory mechanism involved is not clear. In this study, we established in vivo and in vitro chronic cerebral hypoperfusion models to explore whether the ADORA2A regulated astrocyte-mediated inflammation through STAT3/YKL-40 axis and using immunohistochemical, western blotting, ELISA, PCR, and other techniques to verify the effect of astrocytes ADORA2A on the white matter injury. The in vivo experiments showed that activation of the ADORA2A decreased the expression of both STAT3 and YKL-40 in the astrocytes and alleviated the white matter injury, whereas its inhibition had the opposite effects. Similarly, ADORA2A inhibition significantly increased the expression of STAT3 and YKL-40 in astrocytes in vitro, with more proinflammatory cytokines being released by astrocytes. STAT3 inhibition enhanced the inhibitory effect of ADORA2A on YKL-40 synthesis, whereas its activation reversed the phenomenon. These results suggest that the activation of ADORA2A in astrocytes can inhibit the inflammation mediated by the STAT3/YKL-40 axis and thereby reduce white matter injury in cerebral small vessel disease.


Asunto(s)
Receptor de Adenosina A2A , Sustancia Blanca , Animales , Astrocitos/metabolismo , Proteína 1 Similar a Quitinasa-3/metabolismo , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor de Adenosina A2A/metabolismo , Factor de Transcripción STAT3/metabolismo , Sustancia Blanca/patología
10.
Int J Biol Macromol ; 202: 529-538, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35066019

RESUMEN

The pro-inflammatory cytokine interleukin-17A (IL-17A) is a key driver of multiple inflammatory and immune disorders. Therapeutic antibodies targeting IL-17A have been proven effective in treating patients with these diseases; however, large variations in clinical outcomes have been observed with different antibodies. In this study, we developed HB0017, a novel monoclonal antibody that targets human IL-17A. HB0017 specifically and strongly bound to human, cynomolgus monkey, and mouse IL-17A at the physiological interface with the IL-17A receptor. In human and monkey cells, HB0017 potently antagonized the functions of IL-17A through competitive binding. HB0017 functioned equivalently to that of clinically approved antibodies in terms of therapeutic efficacy for inflammatory disorders and psoriasis in a mouse model. The results indicate that HB0017 may be an alternative biological therapy for treating patients with inflammation and autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Psoriasis , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Humanos , Interleucina-17 , Macaca fascicularis/metabolismo , Ratones , Psoriasis/tratamiento farmacológico
11.
Nucleic Acids Res ; 50(D1): D719-D728, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34669962

RESUMEN

As an important post-translational modification, ubiquitination mediates ∼80% of protein degradation in eukaryotes. The degree of protein ubiquitination is tightly determined by the delicate balance between specific ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase-mediated deubiquitination. In 2017, we developed UbiBrowser 1.0, which is an integrated database for predicted human proteome-wide E3-substrate interactions. Here, to meet the urgent requirement of proteome-wide E3/deubiquitinase-substrate interactions (ESIs/DSIs) in multiple organisms, we updated UbiBrowser to version 2.0 (http://ubibrowser.ncpsb.org.cn). Using an improved protocol, we collected 4068/967 known ESIs/DSIs by manual curation, and we predicted about 2.2 million highly confident ESIs/DSIs in 39 organisms, with >210-fold increase in total data volume. In addition, we made several new features in the updated version: (i) it allows exploring proteins' upstream E3 ligases and deubiquitinases simultaneously; (ii) it has significantly increased species coverage; (iii) it presents a uniform confidence scoring system to rank predicted ESIs/DSIs. To facilitate the usage of UbiBrowser 2.0, we also redesigned the web interface for exploring these known and predicted ESIs/DSIs, and added functions of 'Browse', 'Download' and 'Application Programming Interface'. We believe that UbiBrowser 2.0, as a discovery tool, will contribute to the study of protein ubiquitination and the development of drug targets for complex diseases.


Asunto(s)
Bases de Datos Genéticas , Enzimas Desubicuitinizantes/genética , Programas Informáticos , Ubiquitina-Proteína Ligasas/genética , Enzimas Desubicuitinizantes/clasificación , Células Eucariotas/metabolismo , Proteoma/genética , Especificidad por Sustrato/genética , Ubiquitina-Proteína Ligasas/clasificación
12.
Methods Microbiol ; 50: 1-26, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38620918

RESUMEN

The occurrence of the COVID-19 pandemic caused by the SARS-CoV-2 virus since the end of 2019 has significantly affected the entire world. Now SARS-CoV-2 diagnostic tests are not only required for screening of suspected infected people for their medical treatment, but have also become a routine diagnosis for all people at a place where new cases have emerged in order to control spread of the disease from that region. For these reasons, sensitive methods for detection of SARS-CoV-2 are highly needed in order to avoid undetected infections. In addition, sample pooling that uses pooled specimens has been routinely employed as a time- and cost-effective strategy for community monitoring of SARS-CoV-2. In this regard, the content of each viral RNA sample of an individual will be further diluted in detection; therefore, higher detection sensitivity would be rather preferred. Among nucleic acid-based detection methods, isothermal nucleic acid amplifications are considered quite promising because they typically take less time to complete the test (even less than 20 min) without the need of thermal cycles. Hence, it does not necessitate the use of highly costly real-time PCR machines. According to recently published isothermal nucleic acid amplification methods, the reverse transcription recombinase polymerase amplification (RT-RPA) approach shows outstanding sensitivity with up to single-copy sensitivity in a test reaction. This chapter will mainly focus on how to employ RT-RPA technology to sensitively detect SARS-CoV-2 RNA. Besides, recently published RT-RPA based detection methods will be summarized and compared regarding their detection parameters and the primers and probes being used. In addition, we will also highlight the key considerations on how to design an ultrasensitive RT-RPA assay and the precautions needed to conduct the assay. Moreover, based on our recent report, we will also detail the methods we developed to detect SARS-CoV-2 RNA using modified RT-RPA, or RT-ERA, with single-copy sensitivity and the possible extensions beyond this method.

13.
Front Immunol ; 12: 778978, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925354

RESUMEN

Therapeutic monoclonal antibodies (mAbs) blocking immune checkpoints have been mainly used as monotherapy. Recently, combination therapy targeting multiple immune checkpoints has recently been explored to increase anti-cancer efficacy. Particularly, a single molecule targeting more than one checkpoints has been investigated. As dual blocking of PD-1/PD-L1 and VEGF/VEGFR has demonstrated synergism in anti-tumor activities, we developed a novel bispecific antibody, termed HB0025, which is formed via fusing the domain 2 of vascular endothelial growth factor receptor 1 (VEGFR1D2) and anti-PD-L1 mAb by using mAb-Trap technology. HB0025 almost completely retains the binding affinities and the biological activities in-vitro when compared with the parent anti-PD-L1 mAb or VEGFR1D2 fusion protein. Preclinical data demonstrated that HB0025 was more effective in inhibiting cancer growth than anti PD-L1 mAb or VEGFR1D2 fusion protein. Thus, our bispecific antibody may bring about greater clinical benefits and broader indications.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes de Fusión/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/uso terapéutico , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Neoplasias/patología , Dominios Proteicos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/uso terapéutico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Plant Commun ; 2(1): 100091, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33511343

RESUMEN

The post-translational protein modification known as SUMOylation has conserved roles in the heat stress responses of various species. The functional connection between the global regulation of gene expression and chromatin-associated SUMOylation in plant cells is unknown. Here, we uncovered a genome-wide relationship between chromatin-associated SUMOylation and transcriptional switches in Arabidopsis thaliana grown at room temperature, exposed to heat stress, and exposed to heat stress followed by recovery. The small ubiquitin-like modifier (SUMO)-associated chromatin sites, characterized by whole-genome ChIP-seq, were generally associated with active chromatin markers. In response to heat stress, chromatin-associated SUMO signals increased at promoter-transcriptional start site regions and decreased in gene bodies. RNA-seq analysis supported the role of chromatin-associated SUMOylation in transcriptional activation during rapid responses to high temperature. Changes in SUMO signals on chromatin were associated with the upregulation of heat-responsive genes and the downregulation of growth-related genes. Disruption of the SUMO ligase gene SIZ1 abolished SUMO signals on chromatin and attenuated rapid transcriptional responses to heat stress. The SUMO signal peaks were enriched in DNA elements recognized by distinct groups of transcription factors under different temperature conditions. These observations provide evidence that chromatin-associated SUMOylation regulates the transcriptional switch between development and heat stress response in plant cells.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Cromatina/metabolismo , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Sumoilación/fisiología , Activación Transcripcional/fisiología , Cromatina/genética , Respuesta al Choque Térmico/genética , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Sumoilación/genética
16.
Int J Mol Med ; 40(1): 75-82, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28560423

RESUMEN

Cyclooxygenase-2 (COX-2) is a key enzyme which catalyzes the conversion of arachidonic acid (AA) into prostaglandins (PGs). It plays an important role in pathophysiological processes, such as tumorigenesis, angiogenesis, inflammation and tumor cell drug resistance. Therefore, COX-2 has been viewed as an important target for cancer therapy. The preparation of COX-2 protein is an important initial step for the subsequent development of COX-2 inhibitors. In this study, we report a strategy to heterologously express truncated human COX-2 (trCOX-2) in Escherichia coli (E. coli) BL21(DE3) host cells. Following denaturation, purification and renaturation, we successfully obtained enzymatically active trCOX-2 containing 257 residues of the C-terminus. Homology modeling and molecular docking analyses revealed that trCOX-2 retained the predicted 3D catalytic domain structure and AA could still bind to its hydrophobic groove. Western blot analysis and ELISA indicated that the trCOX-2 still retained its characteristic antigenicity and binding activity, while COX assays revealed that trCOX-2 maintained its enzyme activity. On the whole, in this study, we provided a novel method to isolate trCOX-2 possessing AA binding and catalytic activities. This study thus lays a foundation to facilitate further investigations of COX-2 and offers a valuable method with which to achieve the prokaryotic expression of a eukaryotic membrane protein.


Asunto(s)
Ácido Araquidónico/química , Ciclooxigenasa 2 , Escherichia coli/metabolismo , Expresión Génica , Ácido Araquidónico/metabolismo , Dominio Catalítico , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/química , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/aislamiento & purificación , Escherichia coli/genética , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
17.
Talanta ; 141: 235-8, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25966408

RESUMEN

In this work, a novel integrated sample preparation device for SDS-assisted proteome analysis was developed, by which proteins dissolved in 4% (w/v) SDS were first diluted by 50% methanol, and then SDS was online removed by a hollow fiber membrane interface (HFMI) with 50mM ammonium bicarbonate (pH 8.0) as an exchange buffer, finally digested by an immobilized enzyme reactor (IMER). To evaluate the performance of such an integrated device, bovine serum albumin dissolved in 4% (w/v) SDS as a model sample was analyzed; it could be found that similar to that obtained by direct analysis of BSA digests without SDS (the sequence coverage of 60.3±1.0%, n=3), with HFMI as an interface for SDS removal, BSA was identified with the sequence coverage of 61.0±1.0% (n=3). However, without SDS removal by HFMI, BSA could not be digested by the IMER and none peptides could be detected. In addition, such an integrated sample preparation device was also applied for the analysis of SDS extracted proteins from rat brain, compared to those obtained by filter-aided sample preparation (FASP), not only the identified protein group and unique peptide number were increased by 12% and 39% respectively, but also the sample pretreatment time was shortened from 24h to 4h. All these results demonstrated that such an integrated sample preparation device would provide an alternative tool for SDS assisted proteome analysis.


Asunto(s)
Proteínas/análisis , Proteómica/instrumentación , Proteómica/métodos , Dodecil Sulfato de Sodio/aislamiento & purificación , Animales , Química Encefálica , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Diseño de Equipo , Membranas Artificiales , Sistemas en Línea , Ratas , Albúmina Sérica Bovina/análisis , Albúmina Sérica Bovina/química , Espectrometría de Masas en Tándem , Tripsina/química , Tripsina/metabolismo
18.
J Chromatogr A ; 1356: 148-56, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-24999068

RESUMEN

In this work, 1.9 µm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 µm superficially porous materials with 0.18 µm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 µm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 µm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 µm superficially porous silica packing materials would be promising in the ultra-fast and high-resolution separation of biomolecules.


Asunto(s)
Fragmentos de Péptidos/aislamiento & purificación , Dióxido de Silicio/química , Adsorción , Cromatografía en Gel , Microesferas , Tamaño de la Partícula , Fragmentos de Péptidos/química , Porosidad , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/aislamiento & purificación , Propiedades de Superficie
19.
Talanta ; 107: 189-94, 2013 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-23598211

RESUMEN

The exceptional growth rate of velvet antler makes it a valuable model for studying the development of tissues, such as blood vessels, cartilage and bone. Meanwhile, investigating the activities of extracted proteins from velvet antlers promisingly leads to the discovery of new active factors which regulate the development of above-mentioned tissue types. In this study, a novel sequential protein extraction method was developed for proteome profiling and bioactivity study of velvet antlers. Herein, four antler growing tips were pooled to create a proportional pooled sample, and three aliquots of which were extracted in parallel using the developed extraction method. For each sample, proteins were extracted sequentially by saline solvent (0.15M sodium chloride, pH 7.0), mild acid buffer (0.15M acetate buffer, pH 4.0) and mild alkaline buffer (0.15M glycine-sodium hydroxide buffer, pH 10.0) with good bio-compatibility to prevent proteins denaturation. Then STD lysis buffer, containing 4% SDS, 0.1M Tris-HCl and 0.1M DTT, was used to extract hydrophobic proteins. The tryptic digest of each fraction was analyzed by nanoRPLC-ESI-MS/MS in triplicates, with false discovery rate for peptide identification adjusted to 1% to create filtered protein group list. In total, 1423 protein groups were identified, which expanded up to 3 times of the previous published dataset. The relative standard deviation of identified peptide and protein group number for all analyses indicated the good reproducibility of the developed sequential protein extraction method. Additionally, proteins extracted by acid buffer and alkaline buffer showed obvious promoting effect on the proliferation of human umbilical vein endothelial cells. All these results demonstrate that the developed sequential extraction method is efficient for the comprehensive proteome analysis and activity investigation of velvet antlers.


Asunto(s)
Cuernos de Venado/química , Ciervos/metabolismo , Proteoma/aislamiento & purificación , Animales , Cuernos de Venado/crecimiento & desarrollo , Tampones (Química) , Proliferación Celular , Ciervos/crecimiento & desarrollo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Proteoma/análisis , Proteoma/metabolismo , Cloruro de Sodio/química , Dodecil Sulfato de Sodio/química , Espectrometría de Masas en Tándem
20.
Anal Chim Acta ; 729: 26-35, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22595430

RESUMEN

The enrichment of low abundance phosphopeptides before MS analysis is a critical step for in-depth phosphoproteome research. In this study, mesoporous titanium dioxide (TiO(2)) aerogel was prepared by precipitation and supercritical drying. The specific surface area up to 490.7 m(2) g(-1) is achieved by TiO(2) aerogel, much higher than those obtained by commercial TiO(2) nanoparticles and by the latest reported mesoporous TiO(2) spheres. Due to the large specific surface area and the mesoporous structure of the aerogel, the binding capacity for phosphopeptides is six times higher than that of conventional TiO(2) microparticles (173 vs 28 µmol g(-1)). Because of the good compatibility of enrichment procedure with MALDI-TOF-MS and the large binding capacity of TiO(2) aerogel, a detection limit as low as 30 amol for analyzing phosphopeptides in ß-casein digest was achieved. TiO(2) aerogel was further applied to enrich phosphopeptides from rat liver mitochondria, and 266 unique phosphopeptides with 340 phosphorylation sites, corresponding to 216 phosphoprotein groups, were identified by triplicate nanoRPLC-ESI-MS/MS runs, with false-positive rate less than 1% at the peptide level. These results demonstrate that TiO(2) aerogel is a kind of promising material for sample pretreatment in the large-scale phosphoproteome study.


Asunto(s)
Mitocondrias Hepáticas/química , Fosfopéptidos/química , Fosfopéptidos/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Titanio/química , Animales , Caseínas/química , Geles , Microscopía Electrónica de Rastreo/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Fosfoproteínas/análisis , Porosidad , Proteoma/análisis , Ratas , Extracción en Fase Sólida/métodos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...