Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612076

RESUMEN

The harsh service environment of aeroengine hot-end components requires superalloys possessing excellent antioxidant properties. This study investigated the effect of pre-strain on the oxidation behavior of polycrystalline Ni3Al-based superalloys. The growth behaviors of oxidation products were analyzed by scanning electron microscope, transmission electron microscope, X-ray Photoelectron Spectroscopy and Raman spectroscopy. The results indicated that the 5% pre-strained alloys exhibited lower mass gain, shallower oxidation depth and more compact oxide film structures compared to the original alloy. This is mainly attributed to the formation of rapid diffusion paths for Al atoms diffusing to the surface under 5% pre-strain, which promotes the faster formation of protective Al2O3 film while continuing to increase the pre-strain to 25% results in less protective transient oxidation behavior being aggravated due to the increase in dislocation density within the alloy, which prevents the timely formation of the protective Al2O3 film, resulting in uneven oxidation behavior on the alloy.

2.
Materials (Basel) ; 13(3)2020 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-32024304

RESUMEN

Due to its excellent comprehensive performances, Al-Si-Mg alloy i widely used in automotive, transportation and other fields. In this work, tensile performances and fracture behavior of Al-Si-Mg alloy modified by dilute Sc and Sr elements (Al-7.12Si-0.36Mg-0.2Sc-0.005Sr) were investigated at the temperature of -60-200 °C for the first time, aiming to obtain a satisfactory thermal stability within a certain temperature range. The results showed that the new designed Al-Si-Mg alloy possessed a completely stable yield strength and a higher-level elongation under the present conditions. Fracture morphology analysis, fracture profile observation and strengthening mechanism analysis were applied to elucidate the evolution mechanisms of yield strength and elongation of the alloy. The fracture modes were significantly distinct in different temperature sections, and the reasons were discussed. In addition, the interaction among the nano precipitate phase particles, the deformation substructure and the dislocations were responsible for the thermal stability of the alloy within a certain temperature range.

3.
Materials (Basel) ; 12(13)2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31252595

RESUMEN

The effect of Sn addition on the microstructure and corrosion behavior of extruded Mg-5Zn-4Al-xSn (0, 0.5, 1, 2, and 3 wt %) alloys was investigated by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical measurements, and immersion tests. Microstructural results showed that the average grain size decreased to some degree and the amount of precipitates increased with the increasing amount of Sn. The extruded Mg-5Zn-4Al-xSn alloy mainly consisted of α-Mg, Mg32(Al,Zn)49, and Mg2Sn phases as the content of Sn was above 1 wt %. Electrochemical measurements indicated that the extruded Mg-5Zn-4Al-1Sn (ZAT541) alloy presented the best corrosion performances, with corrosion potential (Ecorr) and corrosion current density (Icorr) values of -1.3309 V and 6.707 × 10-6 A·cm-2, respectively. Furthermore, the corrosion mechanism of Sn is discussed in detail.

4.
Materials (Basel) ; 11(5)2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29734700

RESUMEN

The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

5.
Nanomaterials (Basel) ; 5(2): 697-721, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-28347030

RESUMEN

Dealloying, a famous ancient etching technique, was used to produce nanoporous metals decades ago. With the development of dealloying techniques and theories, various interesting dealloying products including nanoporous metals/alloys, metal oxides and composites, which exhibit excellent catalytic, optical and sensing performance, have been developed in recent years. As a result, the research on dealloying products is of great importance for developing new materials with superior physical and chemical properties. In this paper, typical dealloying products from Cu-based metallic glasses after dealloying in hydrofluoric acid and hydrochloric acid solutions are summarized. Several potential application fields of these dealloying products are discussed. A promising application of nanoporous Cu (NPC) and NPC-contained composites related to the energy storage field is introduced. It is expected that more promising dealloying products could be developed for practical energy storage applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA