Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(11): 118202, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563948

RESUMEN

Using a statistical mechanical model and numerical simulations, we provide the design principle for the bridging strength (ξ) and linker density (ρ) dependent superselectivity in linker-mediated multivalent nanoparticle adsorption. When the bridges are insufficient, the formation of multiple bridges leads to both ξ- and ρ-dependent superselectivity. When the bridges are excessive, the system becomes insensitive to bridging strength due to entropy-induced self-saturation and shows a superselective desorption with respect to the linker density. Counterintuitively, lower linker density or stronger bridging strength enhances the superselectivity. These findings help the understanding of relevant biological processes and open up opportunities for applications in biosensing, drug delivery, and programmable self-assembly.

2.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38341787

RESUMEN

Materials incorporating covalent adaptive networks (CAN), e.g., vitrimers, have received significant scientific attention due to their distinctive attributes of self-healing and stimuli-responsive properties. Different from direct crosslinked systems, bivalent and multivalent systems require a bond swap algorithm that respects detailed balance, considering the multiple equilibria in the system. Here, we propose a simple and robust algorithm to handle bond swap in multivalent and multi-species CAN systems. By including a bias term in the acceptance of Monte Carlo moves, we eliminate the imbalance from the bond swap site selection and multivalency effects, ensuring the detailed balance for all species in the system.

3.
JACS Au ; 3(5): 1385-1391, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37234107

RESUMEN

Multivalency is prevalent in various biological systems and applications due to the superselectivity that arises from the cooperativity of multivalent binding. Traditionally, it was thought that weaker individual binding would improve the selectivity in multivalent targeting. Here, using analytical mean field theory and Monte Carlo simulations, we discover that, for receptors that are highly uniformly distributed, the highest selectivity occurs at an intermediate binding energy and can be significantly greater than the weak binding limit. This is caused by an exponential relationship between the bound fraction and receptor concentration, which is influenced by both the strength and combinatorial entropy of binding. Our findings not only provide new guidelines for the rational design of biosensors using multivalent nanoparticles but also introduce a new perspective in understanding biological processes involving multivalency.

4.
Small Methods ; 7(9): e2300383, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37183306

RESUMEN

The shape-dictated self-assembly of hybrid colloids induced by chemical concentration gradients generated by photocatalytic reactions of the colloids is studied. Different shapes enable the formation of assemblies with distinct lattice structures including hexagons, distorted hexagons, and squares, which are corroborated by computer simulations. Furthermore, assemblies change from lattices to chains when increasing the attraction between the colloids. The results show that photoresponsive hybrid colloids possess a unique capability for shape-dependent self-assembly, offering a practical and versatile approach to manipulate self-assembly at the microscale.

5.
JACS Au ; 2(10): 2359-2366, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36311840

RESUMEN

Thermo-gelling polymers have been envisioned as promising smart biomaterials but limited by their weak mechanical and thermodynamic stabilities. Here, we propose a new thermo-gelling vitrimer, which remains at a liquid state because of the addition of protector molecules preventing the crosslinking, and with increasing temperature, an entropy-driven crosslinking occurs to induce the sol-gel transition. Moreover, we find that the activation barrier in the metathesis reaction of vitrimers plays an important role, and experimentally, one can use catalysts to tune the activation barrier to drive the vitrimer to form an equilibrium gel at high temperature, which is not subject to any thermodynamic instability. We formulate a mean-field theory to describe the entropy-driven crosslinking of the vitrimer, which agrees quantitatively with computer simulations and paves the way for the design and fabrication of novel vitrimers for biomedical applications.

6.
Sci Adv ; 8(26): eabq0969, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776790

RESUMEN

The ordered coassembly of mixed-dimensional species-such as zero-dimensional (0D) nanocrystals and 2D microscale nanosheets-is commonly deemed impracticable, as phase separation almost invariably occurs. Here, by manipulating the ligand grafting density, we achieve ordered coassembly of 0D nanocrystals and 2D nanosheets under standard solvent evaporation conditions, resulting in macroscopic, freestanding hybrid-dimensional superlattices with both out-of-plane and in-plane order. The key to suppressing the notorious phase separation lies in hydrophobizing nanosheets with molecular ligands identical to those of nanocrystals but having substantially lower grafting density. The mismatched ligand density endows the two mixed-dimensional components with a molecular recognition-like capability, driving the spontaneous organization of densely capped nanocrystals at the interlayers of sparsely grafted nanosheets. Theoretical calculations reveal that the intercalation of nanocrystals can substantially reduce the short-range repulsions of ligand-grafted nanosheets and is therefore energetically favorable, while subsequent ligand-ligand van der Waals attractions induce the in-plane order and kinetically stabilize the laminate superlattice structure.

7.
Proc Natl Acad Sci U S A ; 117(44): 27111-27115, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087578

RESUMEN

Recently developed linker-mediated vitrimers based on metathesis of dioxaborolanes with various commercially available polymers have shown both good processability and outstanding performance, such as mechanical, thermal, and chemical resistance, suggesting new ways of processing cross-linked polymers in industry, of which the design principle remains unknown [M. Röttger et al., Science 356, 62-65 (2017)]. Here we formulate a theoretical framework to elucidate the phase behavior of the linker-mediated vitrimers, in which entropy plays a governing role. We find that, with increasing the linker concentration, vitrimers undergo a reentrant gel-sol transition, which explains a recent experiment [S. Wu, H. Yang, S. Huang, Q. Chen, Macromolecules 53, 1180-1190 (2020)]. More intriguingly, at the low temperature limit, the linker concentration still determines the cross-linking degree of the vitrimers, which originates from the competition between the conformational entropy of polymers and the translational entropy of linkers. Our theoretical predictions agree quantitatively with computer simulations, and offer guidelines in understanding and controlling the properties of this newly developed vitrimer system.

8.
Sci Adv ; 6(21): eaaz6921, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32637586

RESUMEN

Developing construction methods of materials tailored for given applications with absolute control over building block placement poses an immense challenge. DNA-coated colloids offer the possibility of realising programmable self-assembly, which, in principle, can assemble almost any structure in equilibrium, but remains challenging experimentally. Here, we propose an innovative system of linker-mediated mobile DNA-coated colloids (mDNACCs), in which mDNACCs are bridged by the free DNA linkers in solution, whose two single-stranded DNA tails can bind with specific single-stranded DNA receptors of complementary sequence coated on colloids. We formulate a mean-field theory efficiently calculating the effective interaction between mDNACCs, where the entropy of DNA linkers plays a nontrivial role. Particularly, when the binding between free DNA linkers in solution and the corresponding receptors on mDNACCs is strong, the linker-mediated colloidal interaction is determined by the linker entropy depending on the linker concentration.

9.
J Phys Chem B ; 123(9): 2157-2168, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30742436

RESUMEN

The control of the self-assembly of the nanocrystals into ordered structures has been extensively investigated, but fewer efforts have been devoted to studying one-component polymer-grafted nanoparticles (OPNPs). Herein, through coarse-grained molecular dynamics simulation, we design a novel nanoparticle (NP) grafted with polymer chains, focusing on its self-assembled structures. First, we examine the effects of length and density of grafted polymer chains by calculating the radial distribution function between NPs, as well as through direct visualization. We observe a monotonic change of the arranged morphology of grafted-NPs as a function of the density of grafted polymer chains, which indicates that the increase of the grafting density contributes to the order of the morphology. Meanwhile, we find that much longer grafted polymer chains worsen the regularity of the morphology. Then, we probe the influence of the stiffness of grafted polymer chains (denoted by K ranging from 0 to 500) on the order of grafted-NPs, finding that the order of the structure exhibits a nonmonotonic behavior as a function of K at moderate grafting density. For high grafting density, the order of the morphology is initially enhanced and becomes saturated as a function of K. For the effect of K on the stress-strain behavior, the system with the lowest order demonstrates the most remarkable reinforced mechanical behavior for both low and high grafting density. Last, we establish the phase diagram by varying the stiffness and density of the grafted polymer chains, which contains the amorphous, ordered, and superlattice structures, respectively. In general, our simulated results provide guidelines to tailor the self-assembly of the OPNPs by taking advantage of the length, density, and stiffness of grafted polymer chains.

10.
Macromol Rapid Commun ; 39(20): e1800382, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30073736

RESUMEN

The matrix-free polymer nanocomposites (PNCs) formed by polymer-grafted nanoparticles(NPs) gain enormous attention due to their controllable morphology and robust properties. Herein, through molecular dynamics simulation, such PNCs are successfully constructed, and the dispersion state of the NPs can be tailored by varying the grafting density. By manipulating the interaction strength between the end groups of the grafted polymer chains, the tensile fracture behavior and the chain orientation are examined. It is revealed that both of them fall down at large strain because of the propagation of the cavities. By probing the self-healing kinetics at various self-healing temperature and time, a time-temperature superposition principle, similar to the Williams, Landel and Ferry equation, is proposed. These results could provide some fundamental guidelines for the design and fabrication of high performance PNCs with excellent self-healing functionality.


Asunto(s)
Modelos Teóricos , Nanocompuestos/química , Nanopartículas/química , Polímeros/química , Cinética , Simulación de Dinámica Molecular , Temperatura
11.
Bioresour Technol ; 264: 17-23, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29783127

RESUMEN

The inhibition of acetate under acidic pH is an ideal way to reduce methanogenesis in mesophilic mixed culture fermentation (MCF). However, the effects of acetate concentration and acidic pH on methanogenesis remain unclear. Besides, although hydrogenotrophic methanogens can be suitable targets in MCF, they are generally ignored. Therefore, we intentionally enriched hydrogenotrophic methanogens and found that free acetic acid (FAA, x) concentration and specific methanogenic activity (SMA, y) were correlated according to the equation: y = 0.86 × 0.31/(0.31 + x) (R2 = 0.909). The SMA was decreased by 50% and 90% at the FAA concentrations of 0.31 and 2.36 g/L, respectively. The coenzyme M concentration and relative electron transport activity agreed well with the FAA concentration. Moreover, the methanogenic activity could not be recovered when the FAA concentration exceeded 0.81 g/L. These findings indicated that neither acetate nor acidic pH, but FAA was the key factor to inhibit methanogenesis in MCF.


Asunto(s)
Ácido Acético , Metano/biosíntesis , Crecimiento Quimioautotrófico , Euryarchaeota , Fermentación
12.
J Phys Chem B ; 121(43): 10146-10156, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28991495

RESUMEN

Through coarse-grained molecular dynamics simulation, we construct a novel kind of end-linked polymer network by employing dual end-functionalized polymer chains that chemically attach to the surface of nanoparticles (NPs), so that the NPs act as large cross-linkers. We examine the effects of the length and flexibility of polymer chains on the dispersion of NPs, and the effect of the chain length on the stress-strain behavior and the segment orientation during the deformation process. We find that the stress upturn becomes more prominent with the decrease of the chain length, attributed to the limited extensibility of the chain strand connecting two neighboring NPs. In addition, this end-linked polymer nanocomposite (PNC) is shown to have a temperature-dependent stress-strain behavior that is contrary to traditional physically mixed PNCs, whose mechanical properties deteriorate with increasing temperature. This is due to the stability of the dispersion of NPs and higher entropic elasticity at higher temperature for the former, while the latter has poorer interfacial interaction at higher temperature, leading to less reinforcing efficiency. By imposing a dynamic oscillatory shear deformation, we obtain a dynamic hysteresis loop for end-linked and physically mixed dispersions. Interestingly, the end-linked system possesses a much smaller hysteresis loss than does the physically mixed system, with the latter exhibiting a more prominent decrease with increasing temperature, due to less interfacial contact. Our results demonstrate that end-linked PNCs combine attractive static and dynamic mechanical properties and exhibit an unusual response to temperature, which could find potential applications in the future.

13.
Appl Microbiol Biotechnol ; 101(6): 2619-2627, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28110397

RESUMEN

Conversion of organic wastes to syngas is an attractive way to utilize wastes. The produced syngas can be further used to produce a variety of chemicals. In this study, a hollow-fiber membrane biofilm reactor with mix cultures was operated at 55 °C to convert syngas (H2/CO2) into acetate. A high concentration of acetate (42.4 g/L) was reached in batch experiment while a maximum acetate production rate of 10.5 g/L/day was achieved in the continuous-flow mode at hydraulic retention time (HRT) of 1 day. Acetate was the main product in both batch and continuous-flow experiments. n-Butyrate was the other byproduct in the reactor. Acetate accounted for more than 98.5 and 99.1% of total volatile fatty acids in batch and continuous modes, respectively. Illumina Miseq high-throughput sequencing results showed that microorganisms were highly purified and enriched in the reactor. The main genus was Thermoanaerobacterium (66% of relative abundance), which was usually considered as H2 producer in the literature, however, likely played a role as a H2 consumer in this study. This study provides a new method to generate the high producing rate and purity of acetate from syngas.


Asunto(s)
Ácido Acético/metabolismo , Dióxido de Carbono/metabolismo , Hidrógeno/metabolismo , Consorcios Microbianos/genética , Aguas del Alcantarillado/microbiología , Thermoanaerobacterium/genética , Técnicas de Cultivo Celular por Lotes , Biopelículas/crecimiento & desarrollo , Reactores Biológicos , Ácido Butírico/metabolismo , Fermentación , Secuenciación de Nucleótidos de Alto Rendimiento , Aguas del Alcantarillado/química , Thermoanaerobacterium/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...