Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5386, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443672

RESUMEN

Systemic inflammation and reciprocal organ interactions are associated with the pathophysiology of heart failure with preserved ejection fraction (HFpEF). However, the clinical value, especially the diagnositc prediction power of inflammation and extra-cardiac organ dysfunction for HfpEF is not explored. In this cross-sectional study, 1808 hospitalized patients from January 2014 to June 2022 in ChiHFpEF cohort were totally enrolled according to inclusion and exclusion criteria. A diagnostic model with markers from routine blood test as well as liver and renal dysfunction for HFpEF was developed using data from ChiHFpEF-cohort by logistic regression and assessed by receiver operating characteristic curve (ROC) and Brier score. Then, the model was validated by the tenfold cross-validation and presented as nomogram and a web-based online risk calculator as well. Multivariate and LASSO regression analysis revealed that age, hemoglobin, neutrophil to lymphocyte ratio, AST/ALT ratio, creatinine, uric acid, atrial fibrillation, and pulmonary hypertension were associated with HFpEF. The predictive model exhibited reasonably accurate discrimination (ROC, 0.753, 95% CI 0.732-0.772) and calibration (Brier score was 0.200). Subsequent internal validation showed good discrimination and calibration (AUC = 0.750, Brier score was 0.202). In additoin to participating in pathophysiology of HFpEF, inflammation and multi-organ interactions have diagnostic prediction value for HFpEF. Screening and optimizing biomarkers of inflammation and multi-organ interactions stand for a new field to improve noninvasive diagnostic tool for HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Estudios Transversales , Volumen Sistólico , Inflamación , Hígado
2.
Fitoterapia ; 174: 105869, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378132

RESUMEN

Fourteen sesquiterpenes, including one undescribed sesquiterpene lactone, were isolated from Youngia japonica, and their structures were identified by NMR, HRESIMS, ECD and calculated ECD. Cytotoxic activities of all isolates against A549, HeLa, and 4 T1 cell lines were detected by CCK8 assay. Among them, 2 showed obvious cytotoxic activity against A549 cells. Subsequently, the production of ROS, and apoptosis of A549 cells treated with 2 were evaluated. The result showed that 2 distinctly increased the ROS level, and induced the apoptosis of A549 cells. Further anticancer mechanism studies showed that 2 increased the expression of cleaved caspase 3. Taken together, our results demonstrated that 2 might become potential leading compounds for the treatment of lung cancer.


Asunto(s)
Antineoplásicos , Asteraceae , Sesquiterpenos , Humanos , Línea Celular Tumoral , Estructura Molecular , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Apoptosis , Sesquiterpenos/farmacología , Sesquiterpenos/química
3.
Front Cardiovasc Med ; 10: 1157163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139122

RESUMEN

Aims: We aim to examine the association of estimated pulse wave velocity (ePWV) with all-cause and cardiovascular mortality in patients with diabetes. Methods: All of adult participants with diabetes from the National Health and Nutrition Examination Survey (NHANES) (1999-2018) were enrolled. ePWV was calculated according to the previously published equation based on age and mean blood pressure. The mortality information was obtained from the National Death Index database. Weighted Kaplan-Meier (KM) plot and weighted multivariable Cox regression was used to investigate the association of ePWV with all-cause and cardiovascular mortality risks. Restricted cubic spline was adopted to visualize the relationship between ePWV and mortality risks. Results: 8,916 participants with diabetes were included in this study and the median follow-up duration was ten years. The mean age of study population was 59.0 ± 11.6 years, 51.3% of the participants were male, representing 27.4 million patients with diabetes in weighted analysis. The increment of ePWV was closely associated with increased risks of all-cause mortality (HR: 1.46, 95% CI: 1.42-1.51) and cardiovascular mortality (HR: 1.59, 95% CI: 1.50-1.68). After adjusting for cofounding factors, for every 1 m/s increase in ePWV, there was a 43% increased risk of all-cause mortality (HR: 1.43, 95% CI: 1.38-1.47) and 58% increased of cardiovascular mortality (HR: 1.58, 95% CI: 1.50-1.68). ePWV had positive linear associations with all-cause and cardiovascular mortality. KM plots also showed that the risks of all-cause and cardiovascular mortality were significantly elevated in patients with higher ePWV. Conclusions: ePWV had a close association with all-cause and cardiovascular mortality risks in patients with diabetes.

4.
Biochem Biophys Res Commun ; 636(Pt 2): 62-70, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36356543

RESUMEN

Epicardial adipose tissue (EAT) is a metabolically active organ which generates inflammatory cytokines. Thickness of EAT is associated with onset and development of heart failure with preserved ejection fraction (HFpEF). However, it is still unclear the specific mechanisms and pharmacological targets on EAT induced inflammation in HFpEF. A two-hit protocol with western diet and Nω-nitrol-arginine methyl ester (L-NAME) was used to establish HFpEF mouse model. In HFpEF mice, inflammatory biomarkers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and von willebrand factor (vWF) elevated in myocardium compared to control. Inflammatory cell infiltration in myocardium was increased. In HFpEF mice, inflammasome-mediated pyroptosis pathway was activated in the EAT. Suppression of pyroptosis-related protein gasdermin D (GSDMD) in cultured EAT could lower cardiomyocyte inflammation and autophagy. Furthermore, spironolactone and rosuvastatin, the two-hit anti-inflammatory agents, reduced NLR family pyrin domain containing 3 (NLRP3)/GSDMD pyroptosis in EAT and autophagy in myocardium of HFpEF mouse. The combination treatment also enhanced exercise tolerance and appeased inflammatory injuries in HFpEF mice. CONCLUSION: Pyroptosis signaling is involved in EAT-myocardium axis in mouse model of HFpEF. Targeting adipocyte-derived inflammation in EAT bears potential to treatment HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Piroptosis , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico , Inflamasomas/metabolismo , Miocardio/metabolismo , Tejido Adiposo/metabolismo , Inflamación/patología , Modelos Animales de Enfermedad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
5.
Front Cell Dev Biol ; 10: 963866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438564

RESUMEN

Background: Endothelial injury induced by low shear stress (LSS) is an initiating factor in the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, and thrombotic diseases. Low shear stress activates the mammalian target of rapamycin complex 2 (mTORC2) signaling pathway. Rictor, the main constituent protein of mTORC2, is involved in vascular development. However, the impact of conditional Rictor ablation on endothelial homeostasis, especially on endothelial-specific markers, such as vascular endothelial-cadherin (VE-cadherin) and von Willebrand factor (VWF), under blood flow stimulation is unclear. Objective: We aimed to investigate whether endothelial Rictor is involved in maintaining vascular endothelial integrity and the potential role of Rictor in atheroprone blood flow-mediated endothelial injury. Methods and results: Immunofluorescence staining showed that endothelial Rictor was successfully knocked out in a mouse model. Scanning electron microscopy (EM) detection revealed disruption of the endothelial monolayer in the thoracic aorta of Rictor-deficient mice. Furthermore, scanning electron microscopy and transmission electron microscopy showed that Rictor deletion disrupted endothelial integrity and expanded cell junctions in the left common carotid artery region. In vitro, low shear stress disrupted actin filament polarity and the promoted the translocation of vascular endothelial-cadherin, the key component of adherens junctions (AJs) in human umbilical vein endothelial cells. After Rictor downregulation by small interfering RNA, the translocation of vascular endothelial-cadherin and stress fibers increased. Rictor knockdown inhibited low shear stress-induced von Willebrand factor upregulation, and downregulation of vascular endothelial-cadherin decreased low shear stress-induced von Willebrand factor expression. These results suggest that vascular endothelial-cadherin/von Willebrand factor is a possible mechanism mediated by Rictor in the pathological process of low shear stress-induced endothelial injury. Conclusion: Rictor is a key protein that regulates endothelial integrity under vascular physiological homeostasis, and Rictor mediates low shear stress-induced endothelial injury by regulating adherens junctions and von Willebrand factor.

6.
Front Physiol ; 13: 879214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592030

RESUMEN

Heart failure (HF), the terminal state of different heart diseases, imposed a significant health care burden worldwide. It is the last battlefield in dealing with cardiovascular diseases. HF with preserved ejection fraction (HFpEF) is a type of HF in which the symptoms and signs of HF are mainly ascribed to diastolic dysfunction of left ventricle, whereas systolic function is normal or near-normal. Compared to HF with reduced ejection fraction (HFrEF), the diagnosis and treatment of HFpEF have made limited progress, partly due to the lack of suitable animal models for translational studies in the past. Given metabolic disturbance and inflammatory burden contribute to HFpEF pathogenesis, recent years have witnessed emerging studies focusing on construction of animal models with HFpEF phenotype by mimicking metabolic disorders. These models prefer to recapitulate the metabolic disorders and endothelial dysfunction, leading to the more detailed understanding of the entity. In this review, we summarize the currently available animal models of HFpEF with metabolic disorders, as well as their advantages and disadvantages as tools for translational studies.

7.
J Inflamm Res ; 15: 1771-1783, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300215

RESUMEN

Vascular endothelial cells (ECs), derived from the mesoderm, form a single layer of squamous cells that covers the inner surface of blood vessels. In addition to being regulated by chemical signals from the extracellular matrix (ECM) and blood, ECs are directly confronted to complex hemodynamic environment. These physical inputs are translated into biochemical signals, dictating multiple aspects of cell behaviour and destination, including growth, differentiation, migration, adhesion, death and survival. Mechanosensors are initial responders to changes in mechanical environments, and the overwhelming majority of them are located on the plasma membrane. Physical forces affect plasma membrane fluidity and change of protein complexes on plasma membrane, accompanied by altering intercellular connections, cell-ECM adhesion, deformation of the cytoskeleton, and consequently, transcriptional responses in shaping specific phenotypes. Among the diverse forces exerted on ECs, shear stress (SS), defined as tangential friction force exerted by blood flow, has been extensively studied, from mechanosensing to mechanotransduction, as well as corresponding phenotypes. However, the precise mechanosensors and signalling pathways that determine atheroprone and atheroprotective phenotypes of arteries remain unclear. Moreover, it is worth to mention that some established mechanosensors of atheroprotective SS, endothelial glycocalyx, for example, might be dismantled by atheroprone SS. Therefore, we provide an overview of the current knowledge on mechanosensors in ECs for SS signals. We emphasize how these ECs coordinate or differentially participate in phenotype regulation induced by atheroprone and atheroprotective SS.

8.
J Geriatr Cardiol ; 17(7): 400-409, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32863822

RESUMEN

BACKGROUND: The determinants of pulmonary hypertension (PH) due to heart failure with preserved ejection fraction (HFpEF) have been poorly investigated in patients with cardiovascular diseases (CVD). METHODS: From July 1 2017 to March 31 2019, a total of 149 consecutive HFpEF patients hospitalized with CVD were enrolled in this prospective cross-sectional study. A systolic pulmonary artery pressure (PASP) > 35 mmHg estimated by echocardiography was defined as PH-HFpEF. Logistic regression was performed to establish predictors of PH in HFpEF patients. RESULTS: Overall, the mean age of participants was 72 ± 11 years, and 74 (49.7%) patients were females. A total of 59 (39.6%) patients were diagnosed with PH-HFpEF by echocardiography. The left atrial diameter (LAD) was related to the ratio of the transmitral flow velocities/mitral annulus tissue velocities in early diastole (E/E') and the left ventricular diameter in systole (LVDs). N-Terminal pro B-type natriuretic peptide (NT-proBNP) was not found to be associated with LAD and impaired diastolic or systolic function of the left ventricle. Multivariable logistic regression showed that atrial fibrillation (AF) increased the risk of PH-HFpEF incidence 3.46-fold with a 95% confidence interval (CI) of 1.44-8.32, P = 0.005. Meanwhile, LAD ≥ 45 mm resulted in a 3.43-fold increased risk, 95% CI: 1.51-7.75, P = 0.003. However, the significance levels of NT-proBNP, age and LVEF were underpowered in the regression model. Two variables, AF and LAD ≥ 45 mm, predicted the PH-HFpEF incidence (C-statistic = 0.773, 95% CI: 0.695-0.852, P < 0.001). CONCLUSIONS: Two parameters associated with electrical and anatomical remodelling of the left atrium were related to the incidence of PH in HFpEF patients with CVD.

9.
J Alzheimers Dis ; 75(1): 245-260, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32280096

RESUMEN

Excitatory (E) and inhibitory (I) balance of neural network activity is essential for normal brain function and of particular importance to memory. Disturbance of E/I balance contributes to various neurological disorders. The appearance of neural hyperexcitability in Alzheimer's disease (AD) is even suggested as one of predictors of accelerated cognitive decline. In this study, we found that GAD67+, Parvalbumin+, Calretinin+, and Neuropeptide Y+ interneurons were progressively lost in the brain of APP/PS1 mice. Transplanted embryonic medial ganglionic eminence derived interneuron progenitors (IPs) survived, migrated, and differentiated into GABAergic interneuron subtypes successfully at 2 months after transplantation. Transplantation of IPs hippocampally rescued impaired synaptic plasticity and cognitive deficits of APP/PS1 transgenic mice, concomitant with a suppression of neural hyperexcitability, whereas transplantation of IPs failed to attenuate amyloid-ß accumulation, neuroinflammation, and synaptic loss of APP/PS1 transgenic mice. These observations indicate that transplantation of IPs improves learning and memory of APP/PS1 transgenic mice via suppressing neural hyperexcitability. This study highlights a causal contribution of GABAergic dysfunction to AD pathogenesis and the potentiality of IP transplantation in AD therapy.


Asunto(s)
Enfermedad de Alzheimer/cirugía , Disfunción Cognitiva/cirugía , Neuronas GABAérgicas/trasplante , Interneuronas/trasplante , Células-Madre Neurales/trasplante , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Cognición/fisiología , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Presenilina-1/genética
10.
Front Neurosci ; 13: 30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30778282

RESUMEN

Mitochondria are the double membrane organelles providing most of the energy for cells. In addition, mitochondria also play essential roles in various cellular biological processes such as calcium signaling, apoptosis, ROS generation, cell growth, and cell cycle. Mitochondrial dysfunction is observed in various neurological disorders which harbor acute and chronic neural injury such as neurodegenerative diseases and ischemia, hypoxia-induced brain injury. In this review, we describe how mitochondrial dysfunction contributes to the pathogenesis of neurological disorders which manifest chronic or acute neural injury.

11.
J Alzheimers Dis ; 46(4): 863-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25854934

RESUMEN

Lamotrigine (LTG), a broad-spectrum anti-epileptic drug widely used in treatment for seizures, shows potential efficacy in Alzheimer's disease (AD) therapy. Chronic LTG treatment rescues the suppressed long-term potentiation, loss of spines and cognitive deficits in AßPP/PS1 mice, known to overexpress a chimeric mouse/human mutant amyloid-ß protein precursor (AßPP) and a mutant human presenilin 1 (PS1). These changes are accompanied by reduction of amyloid-ß (Aß) plaques density and of levels of ß-C-terminal fragment of AßPP (ß-CTF), a fragment of AßPP cleaved by ß-secretase. These results suggest LTG treatment reduces Aß production, possibly through modulation of cleavage of AßPP by ß-secretase. However, the underlying mechanisms still remain unclear. In this study, decreased protein levels, but not mRNA levels of ß-site AßPP-cleaving enzyme 1 (BACE1), were observed in cultured HEK293 cells and the brains of AßPP/PS1 transgenic mice upon LTG treatment. Moreover, LTG treatment suppressed mammalian target of rapamycin (mTOR) signaling, while enhancing activation of cAMP response element binding protein (CREB), two signaling pathways essential for autophagy induction. LTG treatment increased the numbers of LC3-GFP + puncta and LC3-II levels in HEK293 cells, indicating an induction of autophagy. The downregulation of BACE1 by LTG treatment was prevented by the autophagy inhibitor 3-Methyladenine. Therefore, this study shows that LTG treatment reduces the protein levels of BACE1 through activation of autophagy, possibly via inhibition of mTOR signaling and activation of CREB.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Autofagia/efectos de los fármacos , Triazinas/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Autofagia/genética , Células CHO , Proteína de Unión a CREB/metabolismo , Cricetulus , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Lamotrigina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Presenilina-1/genética , Triazinas/uso terapéutico
12.
Proc Natl Acad Sci U S A ; 111(46): 16586-91, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25378699

RESUMEN

Intracellular accumulation of the abnormally modified tau is hallmark pathology of Alzheimer's disease (AD), but the mechanism leading to tau aggregation is not fully characterized. Here, we studied the effects of tau SUMOylation on its phosphorylation, ubiquitination, and degradation. We show that tau SUMOylation induces tau hyperphosphorylation at multiple AD-associated sites, whereas site-specific mutagenesis of tau at K340R (the SUMOylation site) or simultaneous inhibition of tau SUMOylation by ginkgolic acid abolishes the effect of small ubiquitin-like modifier protein 1 (SUMO-1). Conversely, tau hyperphosphorylation promotes its SUMOylation; the latter in turn inhibits tau degradation with reduction of solubility and ubiquitination of tau proteins. Furthermore, the enhanced SUMO-immunoreactivity, costained with the hyperphosphorylated tau, is detected in cerebral cortex of the AD brains, and ß-amyloid exposure of rat primary hippocampal neurons induces a dose-dependent SUMOylation of the hyperphosphorylated tau. Our findings suggest that tau SUMOylation reciprocally stimulates its phosphorylation and inhibits the ubiquitination-mediated tau degradation, which provides a new insight into the AD-like tau accumulation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Mutación Puntual , Procesamiento Proteico-Postraduccional , Proteína SUMO-1/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Sustitución de Aminoácidos , Péptidos beta-Amiloides/farmacología , Androstadienos/farmacología , Animales , Corteza Cerebral/patología , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Indoles/farmacología , Masculino , Maleimidas/farmacología , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Mutación Missense , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/farmacología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Proteína SUMO-1/genética , Salicilatos/farmacología , Solubilidad , Sumoilación , Ubiquitinación , Wortmanina , Proteínas tau/genética
13.
J Alzheimers Dis ; 33 Suppl 1: S123-39, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22710920

RESUMEN

Microtubule associated protein tau is a phosphoprotein which potentially has 80 serine/threonine and 5 tyrosine phosphorylation sites. Normal brain tau contains 2-3 moles of phosphate per mole of the protein. In Alzheimer's disease brain, tau is abnormally hyperphosphorylated to a stoichiometry of at least three-fold greater than normal tau, and in this altered state it is aggregated into paired helical filaments forming neurofibrillary tangles, a histopathological hallmark of the disease. The abnormal hyperphosphorylation of tau is also a hallmark of several other related neurodegenerative disorders, called tauopathies. The density of neurofibrillary tangles in the neocortex correlates with dementia and, hence, is a rational therapeutic target and an area of increasing research interest. Development of rational tau-based therapeutic drugs requires understanding of the role of various phosphorylation sites, protein kinases and phosphatases, and post-translational modifications that regulate the phosphorylation of this protein at various sites, as well as the molecular mechanism by which the abnormally hyperphosphorylated tau leads to neurodegeneration and dementia. In this article we briefly review the progress made in these areas of research.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Degeneración Nerviosa/metabolismo , Ovillos Neurofibrilares/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Humanos , Ratones , Degeneración Nerviosa/patología , Ovillos Neurofibrilares/patología , Neurofibrillas/metabolismo , Neurofibrillas/patología , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...