Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 11: 669518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178653

RESUMEN

In non-small-cell lung carcinoma (NSCLC), aberrant activation of mammalian target of rapamycin (mTOR) contributes to tumorigenesis and cancer progression. PQR620 is a novel and highly-potent mTOR kinase inhibitor. We here tested its potential activity in NSCLC cells. In primary human NSCLC cells and established cell lines (A549 and NCI-H1944), PQR620 inhibited cell growth, proliferation, and cell cycle progression, as well as cell migration and invasion, while inducing significant apoptosis activation. PQR620 disrupted assembles of mTOR complex 1 (mTOR-Raptor) and mTOR complex 2 (mTOR-Rictor-Sin1), and blocked Akt, S6K1, and S6 phosphorylations in NSCLC cells. Restoring Akt-mTOR activation by a constitutively-active Akt1 (S473D) only partially inhibited PQR620-induced cytotoxicity in NSCLC cells. PQR620 was yet cytotoxic in Akt1/2-silenced NSCLC cells, supporting the existence of Akt-mTOR-independent mechanisms. Indeed, PQR620 induced sphingosine kinase 1 (SphK1) inhibition, ceramide production and oxidative stress in primary NSCLC cells. In vivo studies demonstrated that daily oral administration of a single dose of PQR620 potently inhibited primary NSCLC xenograft growth in severe combined immune deficient mice. In PQR620-treated xenograft tissues, Akt-mTOR inactivation, apoptosis induction, SphK1 inhibition and oxidative stress were detected. In conclusion, PQR620 exerted potent anti-NSCLC cell activity via mTOR-dependent and -independent mechanisms.

2.
Cell Death Dis ; 12(4): 365, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824293

RESUMEN

Activation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.


Asunto(s)
Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Ratones SCID , Transducción de Señal/efectos de los fármacos
3.
Anat Rec (Hoboken) ; 304(2): 302-312, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32396707

RESUMEN

The purpose of this study is to explore the antitumor properties of resibufogenin (RB) in non-small cell lung cancer (NSCLC) and elucidate its underlying mechanism. A549 and H520 cells were treated with various concentrations of RB with or without NLRP3 inhibitor (MCC950), caspase-1 inhibitor (VX765), or N-acetyl-l-cysteine (an ROS scavenger). Cell counting kit-8 and colony formation assays were conducted to determine cell viability. Cell invasion was detected by using the transwell assay. The release of lactate dehydrogenase (LDH) was determined by the LDH detection assay. The protein expression levels of related genes were measured by western blotting and immunohistochemistry. The reactive oxygen species (ROS) level was detected by using a 2,7-dichlorodihydrofluorescein diacetate ROS Assay Kit. The in vivo effects of RB were evaluated in a xenograft mouse model. RB treatment reduced cell viability and invasion in a dose-dependent manner. Furthermore, RB also enhanced pyroptosis levels in A549 and H520 cells, as indicated by the increased release of LDH and pyroptosis-related proteins. Interestingly, we also found that the antiproliferative and antimetastatic effects of RB were alleviated by the blockade of pyroptosis using NLRP3 inhibitor MCC950. Further study demonstrated that RB induced pyroptosis in a caspase-1-dependent manner, as evidenced by the finding that VX765 effectively reversed the effects of RB on A549 and H520 cells. We also found that RB could trigger caspase-1-dependent pyroptosis through ROS-mediated NF-κB suppression. In summary, our findings provide a potential antitumor agent and a novel insight into the mechanism of RB treatment of NSCLC.


Asunto(s)
Bufanólidos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , FN-kappa B/metabolismo , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Antioxidantes/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Caspasa 1/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo
5.
Oncotarget ; 6(16): 14329-43, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25869210

RESUMEN

Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations are responsive to EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, NSCLC patients with secondary somatic EGFR mutations are resistant to EGFR-TKI treatment. In this study, we investigated the effect of TG101348 (a JAK2 inhibitor) on the tumor growth of erlotinib-resistant NSCLC cells. Cell proliferation, apoptosis, gene expression and tumor growth were evaluated by diphenyltetrazolium bromide (MTT) assay, flow cytometry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, Western Blot and a xenograft mouse model, respectively. Results showed that erlotinib had a stronger impact on the induction of apoptosis in erlotinib-sensitive PC-9 cells but had a weaker effect on erlotinib-resistant H1975 and H1650 cells than TG101348. TG101348 significantly enhanced the cytotoxicity of erlotinib to erlotinib-resistant NSCLC cells, stimulated erlotinib-induced apoptosis and downregulated the expressions of EGFR, p-EGFR, p-STAT3, Bcl-xL and survivin in erlotinib-resistant NSCLC cells. Moreover, the combined treatment of TG101348 and erlotinib induced apoptosis, inhibited the activation of p-EGFR and p-STAT3, and inhibited tumor growth of erlotinib-resistant NSCLC cells in vivo. Our results indicate that TG101348 is a potential adjuvant for NSCLC patients during erlotinib treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Janus Quinasa 2/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Pirrolidinas/farmacología , Sulfonamidas/farmacología , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Asian Pac J Cancer Prev ; 15(18): 7825-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25292071

RESUMEN

OBJECTIVE: To investigate the effect of high expression of XAF1 in vivo or in vitro on lung cancer cell growth and apoptosis. METHODS: 1. The A549 human lung cancer cell line was transfected with Ad5/F35 - XAF1, or Ad5/ F35 - Null at the same multiplicity of infection (MOI); (hereinafter referred to as transient transfected cell strain); XAF1 gene mRNA and protein expression was detected by reverse transcription polymerase chain reaction (RT- PCR) and Western blotting respectively. 2. Methyl thiazolyl tetrazolium (MTT) and annexin V-FITC/PI double staining were used to detect cell proliferation and apoptosis before and after infection of Ad5/F35 - XAF1 with Western blotting for apoptosis related proteins, caspase 3, caspase - 8 and PARP. 3. After the XAF1 gene was transfected into lung cancer A549 cells by lentiviral vectors, and selected by screening with Blasticidin, reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were applied to detect mRNA and protein expression, to establish a line with a stable high expression of XAF1 (hereinafter referred to as stable expression cell strain). Twenty nude mice were randomly divided into groups A and B, 10 in each group: A549/ XAF1 stable expression cell strain was subcutaneously injected in group A, and A549/Ctrl stable cell line stable expression cell strain in group B (control group), to observe transplanted tumor growth in nude mice. RESULTS: The mRNA and protein expression of XAF1 in A549 cells transfected by Ad5/F35 - XAF1 was significantly higher than in the control group. XAF1 mediated by adenovirus vector demonstrated a dose dependent inhibition of lung cancer cell proliferation and induction of apoptosis. This was accompanied by cleavage of caspase -3, -8, -9 and PARP, suggesting activation of intrinsic or extrinsic apoptotic pathways. A cell strain of lung cancer highly expressing XAF1 was established, and this demonstrated delayed tumor growth after transplantation in vivo. CONCLUSION: Adenovirus mediated XAF1 gene expression could inhibit proliferation and induce apoptosis in lung cancer cells in vitro; highly stable expression of XAF1 could also significantly inhibit the growth of transplanted tumors in nude mouse, with no obvious adverse reactions observed. Therefore, the XAF1 gene could become a new target for lung cancer treatment.


Asunto(s)
Apoptosis , Proliferación Celular , Terapia Genética , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pulmonares/terapia , Proteínas de Neoplasias/genética , Proteínas Adaptadoras Transductoras de Señales , Adenoviridae/genética , Animales , Proteínas Reguladoras de la Apoptosis , Western Blotting , Femenino , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...