Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38851427

RESUMEN

OBJECTIVES: Limited information is currently available on the prevalence of and risk factors for tuberculosis infection (TBI) among close contacts of patients with pulmonary TB (PTB) in China. In this study, we estimated the burden of TBI among close contacts using QuantiFERON-TB Gold In-Tube assay (QFT) and identified factors associated with TB transmission among this high-risk population. METHODS: From January 1, 2018 to August 31, 2020, we identified laboratory-confirmed patients with PTB from a population-based, multicentered, cluster-randomized control trial for tuberculosis preventive treatment. Close contacts of these patients were identified, interviewed, and tested using the QFT assay. We estimated TBI prevalence and calculated ORs and 95% CIs for TBI risk factors. RESULTS: A total of 3138 index cases and 8117 close contacts were identified. Of these contacts, 36 had PTB (a prevalence of 443.51 cases/100 000 population). Among the remaining 7986 close contacts; 3124 (39.12%) reported a positive QFT result. QFT positivity was significantly associated with older age (adjusted OR, 1.77; [95% CI, 1.27-2.47], 2.20; [95% CI, 1.59-3.05], and 2.74; [95% CI, 1.96-3.82]) for age groups: 35-44, 45-54, and 55-64, respectively) when compared with a younger age group: 5-14; longer contact duration (adjusted OR, 1.44; 95% CI, 1.22-1.69); and sharing of a bedroom (adjusted OR, 1.39; 95% CI, 1.18-1.65). DISCUSSION: Our findings indicate a high TBI burden among the close contacts of PTB. The results also highlighted that contact tracing and investigation for TBI are necessary and beneficial, particularly for those who are older, have had a longer contact duration, and share a bedroom.

2.
J Hazard Mater ; 472: 134440, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723480

RESUMEN

N6-methyladenosine (m6A) is the most common form of internal post-transcriptional methylation observed in eukaryotic mRNAs. The abnormally increased level of m6A within the cells can be catalyzed by specific demethylase fat mass and obesity-associated protein (FTO) and stay in a dynamic and reversible state. However, whether and how FTO regulates oxidative damage via m6A modification remain largely unclear. Herein, by using both in vitro and in vivo models of oxidative damage induced by arsenic, we demonstrated for the first time that exposure to arsenic caused a significant increase in SUMOylation of FTO protein, and FTO SUMOylation at lysine (K)- 216 site promoted the down-regulation of FTO expression in arsenic target organ lung, and therefore, remarkably elevating the oxidative damage via an m6A-dependent pathway by its specific m6A reader insulin-like growth factor-2 mRNA-binding protein-3 (IGF2BP3). Consequently, these findings not only reveal a novel mechanism underlying FTO-mediated oxidative damage from the perspective of m6A, but also imply that regulation of FTO SUMOylation may serve as potential approach for treatment of oxidative damage.


Asunto(s)
Adenosina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Estrés Oxidativo , Proteínas de Unión al ARN , Sumoilación , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Sumoilación/efectos de los fármacos , Animales , Estrés Oxidativo/efectos de los fármacos , Adenosina/análogos & derivados , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Arsénico/toxicidad , Ratones , Masculino , Pulmón/efectos de los fármacos , Pulmón/metabolismo
3.
Cell Mol Gastroenterol Hepatol ; 17(1): 59-77, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37703946

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease is the most prevalent chronic liver disease and threats to human health. Gut dysbiosis caused by lipopolysaccharide (LPS) leakage has been strongly related to nonalcoholic fatty liver disease progression, although the underlying mechanisms remain unclear. METHODS: Previous studies have shown that low-grade LPS administration to mice on a standard, low-fat chow diet is sufficient to induce symptoms of fatty liver. This study confirmed these findings and supported LPS as a lipid metabolism regulator in the liver. RESULTS: Mechanically, LPS induced dysregulated lipid metabolism by inhibiting the expression of DNA methyltransferases 3B (DNMT3B). Genetic overexpression of DNMT3B alleviated LPS-induced lipid accumulation, whereas its knockdown increased steatosis in mice and human hepatocytes. LPS-induced lower expression of DNMT3B led to hypomethylation in promoter region of CIDEA, resulting in increased binding of SREBP-1c to its promoter and activated CIDEA expression. Hepatic interference of CIDEA reversed the effect of LPS on lipogenesis. These effects were independent of a high-fat diet or high fatty acid action. CONCLUSIONS: Overall, these findings sustain the conclusion that LPS is a lipogenic factor and could be involved in hepatic steatosis progression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/farmacología , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Lipopolisacáridos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
4.
Clin Nutr ; 42(10): 1875-1888, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625317

RESUMEN

BACKGROUND & AIMS: Exposure to a range of elements, air pollution, and specific dietary components in pregnancy has variously been associated with gestational diabetes mellitus (GDM) risk or infant neurodevelopmental problems. We measured a range of pregnancy exposures in maternal hair and/or infant cord serum and tested their relationship to GDM and infant neurodevelopment. METHODS: A total of 843 pregnant women (GDM = 224, Non-GDM = 619) were selected from the Complex Lipids in Mothers and Babies cohort study. Forty-eight elements in hair and cord serum were quantified using inductively coupled plasma-mass spectrometry analysis. Binary logistic regression was used to estimate the associations between hair element concentrations and GDM risk, while multiple linear regression was performed to analyze the relationship between hair/cord serum elements and air pollutants, diet exposures, and Bayley Scales of infant neurodevelopment at 12 months of age. RESULTS: After adjusting for maternal age, BMI, and primiparity, we observed that fourteen elements in maternal hair were associated with a significantly increased risk of GDM, particularly Ta (OR = 9.49, 95% CI: 6.71, 13.42), Re (OR = 5.21, 95% CI: 3.84, 7.07), and Se (OR = 5.37, 95% CI: 3.48, 8.28). In the adjusted linear regression model, three elements (Rb, Er, and Tm) in maternal hair and infant cord serum were negatively associated with Mental Development Index scores. For dietary exposures, elements were positively associated with noodles (Nb), sweetened beverages (Rb), poultry (Cs), oils and condiments (Ca), and other seafood (Gd). In addition, air pollutants PM2.5 (LUR) and PM10 were negatively associated with Ta and Re in maternal hair. CONCLUSIONS: Our findings highlight the potential influence of maternal element exposure on GDM risk and infant neurodevelopment. We identified links between levels of these elements in both maternal hair and infant cord serum related to air pollutants and dietary factors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Diabetes Gestacional , Embarazo , Lactante , Femenino , Humanos , Diabetes Gestacional/epidemiología , Estudios de Cohortes , Sangre Fetal/química , Contaminación del Aire/efectos adversos , Contaminantes Atmosféricos/análisis , Ingestión de Alimentos
5.
China CDC Wkly ; 5(12): 266-270, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37138892

RESUMEN

What is already known about this topic?: Tuberculosis (TB) is often referred to as "a disease of poverty," yet the information regarding the financial burden of TB care is limited and regionally representative. What is added by this report?: This manuscript reported the national representative total and breakdown costs associated with TB care in China. The total cost per patient was 1,185 USD, of which 88% was direct cost and 37% was incurred prior to TB treatment. What are the implications for public health practice?: TB patients experience a significant financial burden, and disparities exist among different regions and populations. Current TB care policies and packages are not sufficient to address this issue.

6.
Int J Nanomedicine ; 18: 1899-1914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057188

RESUMEN

Purpose: The widespread use of zinc oxide nanoparticles (ZnONPs) has raised concerns about its potential toxicity. Melatonin is a neurohormone with tremendous anti-toxic effects. The enterochromaffin cells are an essential source of melatonin in vivo. However, studies on the effects of ZnONPs on endogenous melatonin are minimal. In the present study, we aimed to investigate the effects of ZnONPs exposure on gut-derived melatonin. Methods: In the present study, 64 adult male mice were randomly and equally divided into four groups, and each group was exposed to ZnONPs (0, 6.5, 13, 26 mg/kg/day) for 30 days. Subsequently, the neurobehavioral changes were observed. The effects of ZnONPs on the expression of melatonin-related genes arylalkylamine N-acetyltransferase (Aanat), melatonin receptor1A (Mt1/Mtnr1a), melatonin receptor1B (Mt2/Mtnr1b), and neuropeptide Y (Npy) on melatonin synthesis and secretion in duodenum, jejunum, ileum and colon during day and night were also assessed. Results: The results revealed that oral exposure to ZnONPs induced impairments of locomotor activity and anxiety-like behavior in adult mice during the day. The transcriptional analysis of brain tissues revealed that exposure to ZnONPs caused profound effects on genes and transcriptional signaling pathways associated with melatonin synthesis and metabolic processes during the day and night. We also observed that, in the duodenum, jejunum, ileum and colon sites, ZnONPs resulted in a significant reduction in the expression of the gut-derived melatonin rate-limiting enzyme Aanat, the membrane receptors Mt1 and Mt2 and Npy during the day and night. Conclusion: Taken together, this is the first study shows that oral exposure to ZnONPs interferes with melatonin synthesis and secretion in different intestinal segments of adult mice. These findings will provide novelty insights into the neurotoxic mechanisms of ZnONPs and suggest an alternative strategy for the prevention of ZnONP neurotoxicity.


Asunto(s)
Melatonina , Nanopartículas , Óxido de Zinc , Masculino , Ratones , Animales , Óxido de Zinc/farmacología , Melatonina/farmacología , Nanopartículas/toxicidad
8.
Front Public Health ; 11: 1033532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935730

RESUMEN

Introduction: Digital technologies can improve adherence to tuberculosis (TB) treatment. We studied the impact of digitizing TB treatment monitoring on adherence among TB patients in Wuhan, China, during 2020-2021. Methods: We compared an electronic system introduced to monitor TB medication adherence (e-Patient Service System; e-PSS) with the p paper-based standard of care (TB Control Information System; TCIS) in terms of prescribed TB treatment doses taken by patients and patient outcome after six months of follow up. We designed a cross sectional study using retrospective data for all drug susceptible pulmonary TB patients recorded on both systems. The main indicators were: compliant first follow up visit (within 3 days of start of treatment); medication adherence (80% or more of monthly doses taken); and end of treatment success ratio. Results: A total of 1,576 TB patients were recorded in TCIS in July September, 2020 and 1,145 TB cases were included in e-PSS in January March, 2021. The distribution of patient demographic and clinical features was similar between the two groups. A larger proportion from the e-PSS group visited the community doctor in the first three days compared with the TCIS group (48.91 versus 29. 76 % respectively). Medication adherence was also higher in the e-PSS group during the 6 months of treatment than in the TCIS group (84. 28 versus 80.3 3 % respectively). Treatment success was 92.52% in the e-PSS group and 92.07% in the TCIS group. Multivariate logistic regress ion analysis demonstrated that adjusted odds ratios for compliant first follow up visit, medication adherence and favorable treatment outcome in the e-PSS versus TCIS groups were 2.94 (95% 2.47 3.50), 1.33 (95% 1.08 1.63), and 1. 12 (95% CL: 0.79 1.57) respectively. Discussion: This study revealed improvements in TB care following an intervention to monitor treatment digitally in patients in Wuhan, China.


Asunto(s)
Antituberculosos , Tuberculosis Pulmonar , Humanos , Antituberculosos/uso terapéutico , Estudios Transversales , Estudios Retrospectivos , Cumplimiento de la Medicación , Tuberculosis Pulmonar/tratamiento farmacológico , China
9.
Toxicol Mech Methods ; 33(2): 113-122, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35818324

RESUMEN

Di (2-ethylhexyl) phthalate (DEHP) is one of the most prevalent xenoestrogen endocrine disruptor in daily life. A growing number of studies showed that DEHP could exhibit long-term adverse health effects on the human body, particularly in the liver, kidneys, heart and reproductive systems. However, the impact of oral intake of DEHP on the nervous system is extremely limited. In the present study, the adult C57BL/6J male mice were intragastrically administered with two dosages of DEHP for 35 days. The behavioral parameters were assessed using the elevated plus maze and open-field test. The mRNA expression levels of neuropeptides and the oxidative stress-associated proteins were detected by qPCR and western blot seperately. The histopathologic alterations of the brain were observed by H&E and Nissl staining. The results demonstrated that DEHP exposure could result in neurobehavioral impairments such as locomotor increase and anxiety-like behavior. Furthermore, pathological damages were clearly observed in the cerebral cortex and hippocampus, accompanied by a decrease in neuropeptides and an increase in oxidative stress, which were all positively correlated with the dose of DEHP. Together, these findings provide valuable clues into the DEHP-induced neurotoxicity.


Asunto(s)
Dietilhexil Ftalato , Ratones , Animales , Humanos , Masculino , Dietilhexil Ftalato/toxicidad , Ratones Endogámicos C57BL , Encéfalo , Ansiedad/inducido químicamente , Estrés Oxidativo
10.
Ecotoxicol Environ Saf ; 249: 114370, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508802

RESUMEN

Arsenite is a well-documented neurotoxic metalloid that widely distributes in the natural environment. However, it remains largely unclear how arsenite affects neurological function. Therefore, in this study, the healthy adult male mice were exposed to 0.5 mg/L and 5 mg/L arsenite through drinking water for 30 and 90 days, respectively. Our results showed that there was no significant alteration in the intestine and brain for 30 days exposure, but exposure to arsenite for 90 days significantly induced a reduction of locomotor activity and anxiety-like behavior, caused pathological damage and inflammatory responses in the brain and intestine. We also found that arsenite remarkably disrupted intestinal barrier integrity, decreased the levels of lysozyme and digestive enzymes. Intriguingly, chronic exposure to arsenite significantly changed the levels of gut-brain peptides. Taken together, this study provides meaningful insights that gut-brain communication may involve in the neurobehavioral impairments of arsenite.


Asunto(s)
Arsenitos , Ratones , Animales , Masculino , Arsenitos/toxicidad , Encéfalo/patología
11.
Toxicology ; 485: 153390, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535435

RESUMEN

Increasing evidence shows that gut microbiota is important for host health in response to metal nanomaterials exposure. However, the effect of gut microbiota on the cortex damage caused by pulmonary exposure to zinc oxide nanoparticles (ZnONPs) remains mainly unknown. In this study, a total of 48 adult C57BL/6J mice were intratracheally instilled with 0.6 mg/kg ZnONPs in the presence or absence of antibiotics (ABX) treatment. Besides, 24 mice were treated with or without fecal microbiota transplantation (FMT) after the intraperitoneal administration of ABX. Our results demonstrated for the first time that dysbiosis induced by ABX treatment significantly aggravated cortex damage induced by pulmonary exposure to ZnONPs. Such damage might highly occur through the induction of oxidative stress, manifested by the enhancement of antioxidative enzymes and products of lipid peroxidation. However, ferroptosis was not involved in this process. Interestingly, our data revealed that ABX treatment exacerbated the alterations of gut-brain peptides (including Sst, Sstr2, and Htr4) induced by ZnONPs in both gut and cortex tissues. Moreover, fecal microbiota transplantation (FMT) was able to alleviate cerebral cortex damage, oxidative stress, and alterations of gut-brain peptides induced by pulmonary exposure to ZnONPs. The results together indicate that pulmonary exposure to ZnONPs causes cerebral cortex damage possibly via the disruption of the lung-gut-brain axis. These findings not only propose valuable insights into the mechanism of ZnONPs neurotoxicity but also provide a potential therapeutic method against brain disorders induced by pulmonary exposure to ZnONPs. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the current study are available from the The corresponding author on reasonable request.


Asunto(s)
Nanopartículas , Óxido de Zinc , Ratones , Animales , Óxido de Zinc/toxicidad , Eje Cerebro-Intestino , Ratones Endogámicos C57BL , Pulmón , Nanopartículas/toxicidad , Corteza Cerebral
12.
Neurotoxicology ; 94: 11-23, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36374725

RESUMEN

Arsenite is a well-documented neurotoxicant that widely exists in the environment. However, the detailed mechanisms of arsenite neurotoxicity are not fully clarified. Autophagy has been reported to be involved in many neurological problems induced by arsenite. Since beclin 1 is an essential mediator of autophagy, we herein used both adult wild-type (beclin 1+/+) and heterozygous disruption of beclin 1 (beclin 1+/-) mice for chronic administration of 50 mg/L arsenite via drinking water for 3 months. Our results demonstrated that exposure of arsenite caused the working memory deficit, anxiety-like behavior and motor coordination disorder in beclin 1+/+ mice, accompanied with pathological changes in morphology and electrophysiology in the cortical tissues. This treatment of arsenite significantly reduced the number of neuronal cells and induced microglia activation and synaptic transmission disorders in the wild-type mice as compared with vehicle controls. Intriguingly, by using beclin 1+/- mice, we found that heterozygous disruption of beclin 1 profoundly attenuated these neurotoxic effects induced by arsenite, mainly manifested by improvements in the neurobehavioral impairments, abnormal electrophysiologic alterations as well as dysregulation of synaptic transmission. These findings together indicate that regulation of autophagy via beclin 1 would be a potential strategy for treatment against arsenite neurotoxicity.


Asunto(s)
Arsenitos , Síndromes de Neurotoxicidad , Ratones , Animales , Beclina-1/genética , Beclina-1/farmacología , Arsenitos/toxicidad , Transmisión Sináptica , Síndromes de Neurotoxicidad/genética , Autofagia
13.
Lipids ; 58(1): 19-32, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36253942

RESUMEN

Currently, there is a global trend of rapid increase in obesity, especially among adolescents. The antibiotics cocktails (ABX) therapy is commonly used as an adjunctive treatment for gut microbiota related diseases, including obesity. However, the effects of broad-spectrum antibiotics alone on young obese hosts have rarely been reported. In the present study, the 3-week-old C57BL/6J male mice fed a high-fat diet (HFD) were intragastric administration with ampicillin, vancomycin, metronidazole or neomycin for 30 days. The lipid metabolites in plasma were assessed by biochemical assay kits, and genes related to lipid metabolite in the white adipose were assessed by qPCR. To further analyze the underlying mechanisms, the expression of genes related to lipid metabolism, inflammatory reactions and oxidative stress in the liver were determined by qPCR assay. In addition, the expression of oxidative damage-associated proteins in the liver were detected by western blot. The results showed that oral antibiotics exposure could reduce body weight and fat index in HFD-fed mice, concurrent with the increase of white adipose lipolysis genes and the decrease of hepatic lipogenic genes. Furthermore, antibiotics treatment could clearly reverse the HFD-induced elevation of oxidative damage-related proteins in the liver. Together, these findings will provide valuable clues into the effects of antibiotics on obesity.


Asunto(s)
Dieta Alta en Grasa , Metabolismo de los Lípidos , Ratones , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Hígado/metabolismo , Antibacterianos/farmacología , Lípidos
14.
Front Endocrinol (Lausanne) ; 13: 1060309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531491

RESUMEN

Background: Gestational diabetes mellitus (GDM) is a metabolic condition defined as glucose intolerance with first presentation during pregnancy. Many studies suggest that environmental exposures, including air pollution, contribute to the pathogenesis of GDM. Although hair metabolite profiles have been shown to reflect pollution exposure, few studies have examined the link between environmental exposures, the maternal hair metabolome and GDM. The aim of this study was to investigate the longitudinal relationship (from pre-conception through to the third trimester) between air pollution exposure, the hair metabolome and GDM in a Chinese cohort. Methods: A total of 1020 women enrolled in the Complex Lipids in Mothers and Babies (CLIMB) birth cohort were included in our study. Metabolites from maternal hair segments collected pre-conception, and in the first, second, and third trimesters were analysed using gas chromatography-mass spectrometry (GC-MS). Maternal exposure to air pollution was estimated by two methods, namely proximal and land use regression (LUR) models, using air quality data from the air quality monitoring station nearest to the participant's home. Logistic regression and mixed models were applied to investigate associations between the air pollution exposure data and the GDM associated metabolites. Results: Of the 276 hair metabolites identified, the concentrations of fourteen were significantly different between GDM cases and non-GDM controls, including some amino acids and their derivatives, fatty acids, organic acids, and exogenous compounds. Three of the metabolites found in significantly lower concentrations in the hair of women with GDM (2-hydroxybutyric acid, citramalic acid, and myristic acid) were also negatively associated with daily average concentrations of PM2.5, PM10, SO2, NO2, CO and the exposure estimates of PM2.5 and NO2, and positively associated with O3. Conclusions: This study demonstrated that the maternal hair metabolome reflects the longitudinal metabolic changes that occur in response to environmental exposures and the development of GDM.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Diabetes Gestacional , Embarazo , Lactante , Humanos , Femenino , Diabetes Gestacional/etiología , Tercer Trimestre del Embarazo , Material Particulado/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Estudios Longitudinales , Contaminación del Aire/efectos adversos , Cabello/química
15.
J Anal Methods Chem ; 2022: 5742468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507105

RESUMEN

The inorganic elements have unique properties in biochemical processes in humans. An increasing number of pathologies have been associated with essential element ions, such as lead, mercury, and cadmium. Hair has become an attractive clinical specimen for studying the longitudinal exposure to elements from the external environment. Inductively coupled plasma-mass spectrometry (ICP-MS) coupled with nitric acid (HNO3) digestion is the most common approach for determining inorganic elements from human hair. This study aims to optimize the digestion method for the absolute quantitation of 52 elements using ICP-MS, for a large cohort study in human hair. Five different HNO3 (65%) digestion methods were investigated and evaluated for their internal standard solution stability, reproducibility, element coverage, and standard solution recovery efficiency, namely, room temperature for 24 h (RT), 90°C for 4 h (T90), ultrasonic-assisted digestion (UltraS), programmed digestion of microwave digestion (MicroD), and ordinary microwave oven digestion (O-MicroD). Our results demonstrated that O-MicroD, MicroD, and RT were the best performing digestion methods for coefficient of variation (CV) scores, coverage, and recovery efficiency, respectively. In particular, the O-MicroD method detected multiple elements in a small quantity of hair (3 mg), with minimum nitric acid usage (200 µl) and a short digestion time (30 min). The O-MicroD method had excellent reproducibility, as demonstrated by a continuous thousand injections of hair samples with three internal standards (CV: 103Rh = 3.59%, 115In = 3.61%, and 209Bi = 6.31%). Future studies of the elemental content of hair should carefully select their digestion method to meet the primary purpose of their study.

16.
Toxics ; 10(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36422896

RESUMEN

Giant pandas in zoo captivity are situated in residential areas, where environmental pollutants and anthropogenic factors have an impact on their health. Hair metabolomics has been applied in numerous environmental toxicological studies. Therefore, the panda fur metabolome could be a reliable approach to reflect endogenous and exogenous metabolic changes related to environmental exposure. However, there is no established extraction protocol to study the fur metabolome of pandas. The aim of this research was to optimize the extraction of panda fur metabolome for high-throughput metabolomics analysis using gas chromatography-mass spectrometry. Fur samples were collected from five pandas. Eight different extraction methods were investigated and evaluated for their reproducibility, metabolite coverage, and extraction efficiency, particularly in relation to the biochemical compound classes such as amino acids, tricarboxylic acid cycle derivatives, fatty acids, and secondary metabolites. Our results demonstrated that HCl + ACN were the superior extraction solvents for amino acid and secondary metabolite extraction, and NaOH + MeOH was ideal for fatty acid extraction. Interestingly, the metabolomic analysis of panda fur was capable of discriminating the longitudinal metabolite profile between black and white furs. These extraction protocols can be used in future study protocols for the analysis of the fur metabolome in pandas.

17.
BMJ Open ; 12(11): e066204, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446451

RESUMEN

INTRODUCTION: Oral health is a fundamental component of well-being, and is closely associated with overall health and quality of life. Oral health may also affect the next generation. The children of mothers with poor oral health are likely to also have poor oral health as they go through life. We aim to investigate associations between maternal oral health and general health, pregnancy outcomes, offspring oral health and offspring general health. METHODS AND ANALYSIS: The Lifetime Impact of Oral Health study is a prospective, observational cohort study being done at a single centre in Chongqing, China. A total of 1000 pregnant women will be recruited in their first trimester (11-14 weeks gestation). After obtaining informed consent, general and oral health assessments will be undertaken. Maternal lifestyle, demographic data and biospecimens (blood, hair, urine, nail clippings, saliva, dental plaque, buccal, vaginal and anal swabs) will be collected. Pregnancy outcomes will be recorded at the time of delivery. Cord blood and placenta samples will be collected. The offspring will be followed up for general and oral health examinations, neurodevelopmental assessments and biospecimen (dental plaque, saliva, buccal swabs, exfoliated primary dentition, urine, hair, nail clippings) collection until they are 15 years old. Biological samples will undergo comprehensive metabolomic, microbiome and epigenome analyses. Associations between maternal oral health and general health, pregnancy outcomes, offspring oral health and offspring general health will be investigated and the underlying mechanisms explored. ETHICS AND DISSEMINATION: This project has been approved by the Research Ethics Committee of the Affiliated Hospital of Stomatology of Chongqing Medical University (CQHS-REC-2021 LSNo.23). Participants will be required to provide informed consent to participate in the study. Dissemination of findings will take the form of publications in peer-reviewed journals and presentations at national and international conferences. TRIAL REGISTRATION NUMBER: ChiCTR2100046898.


Asunto(s)
Placa Dental , Salud Bucal , Embarazo , Niño , Humanos , Femenino , Adolescente , Estudios de Cohortes , Calidad de Vida , Estudios Prospectivos , Estudios Observacionales como Asunto
18.
Neurosci Lett ; 791: 136907, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36209975

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative disorders of aging that impairs predominately dopaminergic neurons. N6-methyladenosine (m6A) is the most prevalent form of internal RNA modification in eukaryotes and it plays an essential role in normal brain development and neurodegenerative diseases. The m6A status is dynamically modulated by diverse types of genes called "writers", "erasers" and "readers". However, whether these m6A regulators are perturbed in PD remains poorly understood. To clarify this point, we established a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The motor as well as learning and memory ability of mice were evaluated through and rotarod and Y maze spontaneous alternation tests. Morphological characteristics of tyrosine hydroxylase (TH)-positive cells were visualized using immunohistochemistry, while expressions of alpha-synuclein (α-syn) and TH were determined by using western blot. Furthermore, the expressions of the m6A regulators in the substantia nigra and striatum were evaluated by using qRT-PCR and western blot. As a result, the MPTP-induced PD mice suffered from learning and memory as well as motor defects. Additionally, there were significant TH+ neuron losses in the substantia nigra and striatum of MPTP-injected mice. In the PD mice, proteins including ALKBH5, IGF2BP2 were up-regulated in the substantia nigra, while YTHDF1 and FMR1 was down-regulated. For the striatum, FMR1 and CBLL1 were up-regulated, while IGF2BP3, METTL3 and RBM15 were down-regulated. The expression of genes at the mRNA level were partially in accordance with the protein changes. These findings indicate the m6A regulators may participate in PD pathogenesis.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Ratones Endogámicos C57BL , Sustancia Negra/metabolismo , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
19.
Front Pharmacol ; 13: 1015005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313282

RESUMEN

Asparagus cochinchinensis is a valuable traditional Chinese medicine that has anti-inflammatory ability and effectively regulates the dysbiosis within the body. Obesity is usually characterized by chronic low-grade inflammation with aberrant gut microbiota. However, the role of Asparagus cochinchinensis against obesity remains unknown. Therefore, a high-fat diet (HFD)-induced obese mouse model with or without aqueous extract from Asparagus cochinchinensis root (ACE) treatment was established herein to determine whether ACE alleviated obesity and its involved mechanisms. Our results showed that ACE administration significantly decreased the weight gain and relieved dyslipidemia induced by HFD Treatment of ACE also improved glucose tolerance and insulin resistance in obese animal model, and remarkably decreased inflammation and lipogenesis in the liver and adipose. Moreover, administration of ACE significantly reshaped the gut microbiota of obese mice. These findings together suggest that ACE has beneficial effect against HFD-induced obesity and will provide valuable insights for the therapeutic potential of ACE against obesity and may aid in strategy-making for weight loss.

20.
Food Chem Toxicol ; 169: 113402, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36108982

RESUMEN

Gestational exposure to titanium dioxide nanoparticles (TiO2NPs) has been widely reported to have deleterious effects on the brain functions of offspring. However, little attention has been paid to the neurotoxic effects of TiO2NPs on maternal body after parturition. The pregnant mice were orally administrated with TiO2NPs at 150 mg/kg from gestational day 8-21. The potential effects of TiO2NPs on the neurobehaviors were evaluated at postnatal day 60. The gut microbiota, morphological alterations of intestine and brain, and other indicators that involved in gut-brain axis were all assessed to investigate the underlying mechanisms. The results demonstrated that exposure to TiO2NPs during pregnancy caused the persistent neurobehavioral impairments of maternal mice after delivery for 60 days, mainly including behavioural changes, pathological changes in hippocampus, cortex and intestine. Our data also showed that persistent dysfunction and tissue injuries were probably associated with the disruption of gut-brain axis, manifested by the shift in the composition of gut microbial community, alteration of Sstr1, inhibition of enteric neurons and reduction of diamine oxidase contents in maternal mice. These findings provide a novel insight that regulation of gut microecology may be an alternative strategy for the protection against the neurotoxicity of TiO2NPs in pregnant women.


Asunto(s)
Eje Cerebro-Intestino , Exposición Materna , Nanopartículas , Síndromes de Neurotoxicidad , Lesiones Preconceptivas , Titanio , Animales , Femenino , Humanos , Ratones , Embarazo , Amina Oxidasa (conteniendo Cobre)/metabolismo , Eje Cerebro-Intestino/efectos de los fármacos , Microbioma Gastrointestinal , Nanopartículas/toxicidad , Síndromes de Neurotoxicidad/etiología , Titanio/toxicidad , Lesiones Preconceptivas/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...