Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Reprod Toxicol ; 126: 108608, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735593

RESUMEN

Tripterygium wilfordii (TW) preparations have been utilized in China for treating rheumatoid arthritis and autoimmune diseases. However, their clinical use is limited due to reproductive toxicity, notably premature ovarian failure (POF). Our study aimed to investigate the effect and mechanism of bergenin in attenuating POF induced by triptolide in mice. POF was induced in female ICR mice via oral triptolide administration (50 µg/kg) for 60 days. Mice received bergenin (25, 50, 100 mg/kg, i.g.) or estradiol valerate (EV) (0.1 mg/kg, i.g.) daily, 1 h before triptolide treatment. In vitro, ovarian granulosa cells (OGCs) were exposed to triptolide (100 nM) and bergenin (1, 3, 10 µM). Antioxidant enzyme activity, protein expression, apoptosis rate, and reactive oxygen species (ROS) levels were assessed. The results showed that triptolide-treated mice exhibited evident atrophy, along with an increase in atretic follicles. Bergenin (50, 100 mg/kg) and EV (0.1 mg/kg), orally administered, exerted significant anti-POF effect. Bergenin and EV also decreased apoptosis in mouse ovaries. In vitro, bergenin (1, 3, 10 µM) attenuated triptolide-induced OGCs apoptosis by reducing levels of apoptosis-related proteins. Additionally, bergenin reduced oxidative stress through downregulation of antioxidant enzymes activity and overall ROS levels. Moreover, the combined use with Sh-Nrf2 resulted in a reduced protection of bergenin against triptolide-induced apoptosis of OGCs. Together, bergenin counteracts triptolide-caused POF in mice by inhibiting Nrf2-mediated oxidative stress and preventing OGC apoptosis. Combining bergenin with TW preparations may effectively reduce the risk of POF.

3.
J Ethnopharmacol ; 326: 117910, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38373664

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: For centuries, Shaoyao-Gancao-Fuzi decoction (SGFD) has been a reliable traditional Chinese medicine for treating rheumatoid arthritis (RA). Despite its long history of use, the specific active components and underlying mechanisms of its therapeutic effects have yet to be fully understood. AIM OF THE STUDY: The aim of this study was to investigate the active ingredients and therapeutic effects of SGFD on RA, and to further understand its underlying mechanism. MATERIALS AND METHODS: The chemical constituents in SGFD extract and in rat serum after oral administration of SGFD were identified and evaluated using ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF/MS) together with various data-processing methods, respectively. The efficacy of SGFD was assessed by using an adjuvant-induced arthritis (AIA) rat model and lipopolysaccharide-stimulated RAW 264.7 cell. Subsequently, cell metabolomic was conducted to clarify the potential biomarkers and pathways. ELISA, RT-qPCR, and WB were used to verify the anti-arthritis mechanism of SGFD. RESULTS: A total of 65 chemical constituents were identified in SGFD. 17 active components were distinguished in rat serum samples, of which 13 may be the main active ingredients for SGFD treatment of RA. The remarkable efficacy of SGFD in reducing the symptoms of RA is evident through its ability to alleviate the redness and swelling of the affected paws, as well as reduce the infiltration of inflammatory cells. Cell experiments revealed that rat serum of SGFD reduced IL-1ß, IL-6, and TNF-α secretion in RAW 264.7 cells. 27 potential biomarkers were identified through cell metabolomics analysis. The arachidonic acid (AA) metabolism signaling pathway was activated in RA, which could be reversed by rat serum of SGFD. SGFD effectively inhibited the expression and transformation of AA by downregulating the expression of key enzymes, including phospholipase A and cyclooxygenase. CONCLUSION: SGFD may ameliorate RA symptoms by regulating the AA-PGH2-PGE2/PGF2α pathway. The main active components include songorine, fuziline, neoline, albiflorin, paeoniflorin, liquiritin, benzoylmesaconine, isoformononetin, liquiritigenin, isoliquiritigenin, formononetin, glycyrrhizic acid, and glycyrrhetinic acid.


Asunto(s)
Artritis Reumatoide , Diterpenos , Medicamentos Herbarios Chinos , Glycyrrhiza , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Metabolómica/métodos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Biomarcadores
4.
Int Immunopharmacol ; 128: 111552, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280335

RESUMEN

Colonic mucosal defect constitutes the major reason of recurrence and deterioration of ulcerative colitis (UC), and mucosal healing has become the therapeutic endpoint of UC. Unfortunately, specific promoter of mucosal healing is still absent. Our previous researches demonstrated that arctigenin could alleviate colitis symptoms in mice, but whether it has a positive impact on colonic mucosal healing remains unclear. This study explores whether and how arctigenin promotes mucosal healing. Orally administered arctigenin was shown to alleviate colitis in mice primarily by enhancing mucosal healing. In vitro, arctigenin was shown to promote the wound healing by accelerating colonic epithelial cell migration but not proliferation. Acceleration of the focal adhesion turnover, especially assembly, is crucial for arctigenin promoting the cell migration. Arctigenin was able to activate focal adhesion kinase (FAK) in colonic epithelial cells through directly binding with Tyr251 site of FAK, as evidenced by surface plasmon resonance assay and site-directed mutagenesis experiment. In the colonic epithelial cells of UC patients and colitis mice, FAK activation was significantly down-regulated compared with the controls. Arctigenin promoted colonic epithelial cell migration and mucosal healing in dextran sulphate sodium (DSS)-induced colitis mice dependent on activating FAK, as confirmed by combined use with FAK inhibitor. In summary, arctigenin can directly promote mucosal healing in colitis mice through facilitating focal adhesion turnover, especially assembly, and consequent migration of epithelial cells via targeting FAK. Arctigenin may be developed as a mucosal healing promoter, and FAK is a potential therapeutic target for UC and other mucosal defect-related diseases.


Asunto(s)
Colitis Ulcerosa , Colitis , Furanos , Lignanos , Humanos , Ratones , Animales , Colitis Ulcerosa/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/uso terapéutico , Adhesiones Focales/metabolismo , Colitis/inducido químicamente , Movimiento Celular , Cicatrización de Heridas , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Sulfato de Dextran , Ratones Endogámicos C57BL
5.
Phytomedicine ; 119: 154985, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37516090

RESUMEN

BACKGROUND: Mume Fructus (MF) is the fruit of Prunus mume Sieb. et Zucc, a plant of Rosaceae family. Previous studies demonstrated that MF was capable of ameliorating ulcerative colitis (UC) in mice, its action mechanism needs to be clarified. PURPOSE: This study deciphered whether and how MF extract accelerates colonic mucosal healing, the therapeutic endpoint of UC. METHODS: Biochemical, histopathological and qRT-PCR analyses were utilized to define the therapeutic efficacy of MF on dextran sulfate sodium (DSS)-induced colitis in mice. UHPLC-QTOF-MS/MS-based metabolomics technique was adopted to explore the changes of endogenous metabolites associated with UC and responses to MF intervention. qRT-PCR analysis was performed to confirm the molecular pathway in vivo. The effects of MF and lysophosphatidylcholine (LPC) on cell viability, wound healing, proliferation, and migration were examined through a series of in vitro experiments. Moreover, the effects of different subtypes of phospholipase A2 (PLA2) inhibitors on MF-treated colonic epithelial cells were detected by wound healing test and transwell assay. RESULTS: Orally administered MF could alleviate colitis in mice mainly by accelerating the healing of colonic mucosa. Guided by an unbiased metabolomics screen, we identified LPC synthesis as a major modifying pathway in colitis mice after MF treatment. Notably, MF facilitated the synthesis of LPC by enhancing the expression of PLA2 in colitis mice. Mechanistically, MF and LPC accelerated wound closure by promoting cell migration. Moreover, the promotion of MF on wound healing and migration of colonic epithelial cells was blunted by a cytosolic phospholipase A2 (cPLA2) inhibitor. CONCLUSION: MF can facilitate colonic mucosal healing of mice with colitis through cPLA2-mediated intestinal LPC synthesis, which may become a novel therapeutic agent of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Prunus , Ratones , Animales , Sulfato de Dextran/efectos adversos , Lisofosfatidilcolinas/metabolismo , Prunus/química , Frutas/química , Espectrometría de Masas en Tándem , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/patología , Colitis Ulcerosa/tratamiento farmacológico , Cicatrización de Heridas , Mucosa Intestinal/metabolismo , Fosfolipasas A2 Citosólicas/análisis , Fosfolipasas A2 Citosólicas/metabolismo , Fosfolipasas A2 Citosólicas/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
6.
J Med Chem ; 66(10): 6869-6888, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37154394

RESUMEN

The aryl hydrocarbon receptor (AhR) is a transcript factor, belonging to the basic helix-loop-helix-Per-ARNT-SIM family, is closely associated with health and diseases. Targeting AhR is an emerging therapeutic strategy for various diseases. Norisoboldine (NOR), which is the main alkaloid of Linderae Radix, has been known to activate AhR. Unfortunately, the oral bioavailability (F) of NOR is only 2.49%. To improve the chemical efficacy and bioavailability, we designed and synthesized NOR analogues. Using various in vitro assays, 2-methoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-9-ol (III11) was discovered as a potent AhR agonist. Compound III11 enhanced the expression of AhR downstream target genes, triggered AhR nuclear translocation, and promoted differentiation of regulatory T cells. More importantly, III11 exhibited good bioavailability (F = 87.40%) and remarkable therapeutic effects in a mouse model of ulcerative colitis at a dosage of 10 mg/kg. These findings may serve as a reference for the design of novel AhR agonists against immune and inflammatory diseases.


Asunto(s)
Alcaloides , Colitis Ulcerosa , Ratones , Animales , Receptores de Hidrocarburo de Aril/genética , Colitis Ulcerosa/tratamiento farmacológico , Alcaloides/farmacología , Diferenciación Celular , Translocador Nuclear del Receptor de Aril Hidrocarburo/farmacología
7.
Int J Nanomedicine ; 18: 2345-2358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187996

RESUMEN

Purpose: Madecassic acid (MCA) is a natural triterpenoid isolated from centellae herba that has diverse biological effects, such as anti-inflammatory, antioxidant, and anticancer activities. However, the efficacy of MCA is limited by low oral bioavailability caused by its extremely poor aqueous solubility. This study aimed to develop a self-nanoemulsifying drug delivery system (SNEDDS) for MCA to improve its oral absorption. Methods: The utilized oil phases, surfactants, and co-surfactants for SNEDDS were selected based on the solubility of MCA and emulsification efficiency. The optimized formulation was characterized for pharmaceutical properties and its pharmacokinetic behavior was examined in rats. Besides, the intestinal absorption property of MCA was investigated using in situ single-pass intestinal perfusion and intestinal lymphatic transport. Results: The optimized nanoemulsion formula consists of Capryol 90:Labrasol:Kolliphor ELP:Transcutol HP in a weight ratio of 1:2.7:2.7:3.6 (w/w/w/w). MCA-loaded SNEDDS presented a small droplet size (21.52 ± 0.23 nm), with a zeta potential value of -3.05 ± 0.3 mV. Compared with pure MCA, SNEDDS had a higher effective permeability coefficient and showed 8.47-fold and 4.01-fold of maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC), respectively. Cycloheximide was pretreated before the experiment to evaluate the degree of lymphatic uptake. The results showed that cycloheximide greatly influenced the absorption of SNEDDS, resulting in 82.26% and 76.98% reduction in Cmax and AUC, respectively. Conclusion: This study reports the MCA-loaded SNEDDS with distinctly enhanced in vitro and in vivo performance compared with pure MCA and concludes that the SNEDDS formulation could be a viable and effective strategy for improving the dissolution rate and bioavailability of poor aqueous-soluble ingredients.


Asunto(s)
Nanopartículas , Triterpenos , Ratas , Animales , Disponibilidad Biológica , Cicloheximida , Administración Oral , Sistemas de Liberación de Medicamentos , Solubilidad , Tensoactivos , Emulsiones , Tamaño de la Partícula
8.
Acta Pharm Sin B ; 13(4): 1600-1615, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37139415

RESUMEN

Both cholinergic dysfunction and protein citrullination are the hallmarks of rheumatoid arthritis (RA), but the relationship between the two phenomena remains unclear. We explored whether and how cholinergic dysfunction accelerates protein citrullination and consequently drives the development of RA. Cholinergic function and protein citrullination levels in patients with RA and collagen-induced arthritis (CIA) mice were collected. In both neuron-macrophage coculture system and CIA mice, the effect of cholinergic dysfunction on protein citrullination and expression of peptidylarginine deiminases (PADs) was assessed by immunofluorescence. The key transcription factors for PAD4 expression were predicted and validated. Cholinergic dysfunction in the patients with RA and CIA mice negatively correlated with the degree of protein citrullination in synovial tissues. The cholinergic or alpha7 nicotinic acetylcholine receptor (α7nAChR) deactivation and activation resulted in the promotion and reduction of protein citrullination in vitro and in vivo, respectively. Especially, the activation deficiency of α7nAChR induced the earlier onset and aggravation of CIA. Furthermore, deactivation of α7nAChR increased the expression of PAD4 and specificity protein-3 (SP3) in vitro and in vivo. Our results suggest that cholinergic dysfunction-induced deficient α7nAChR activation, which induces the expression of SP3 and its downstream molecule PAD4, accelerating protein citrullination and the development of RA.

9.
Phytomedicine ; 116: 154874, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37216760

RESUMEN

BACKGROUND: 3, 3'-diindolylmethane (DIM), a classical aryl hydrocarbon receptor (AhR) agonist, has been shown to relieve neuropathic pain, but few studies have reported the efficacy of DIM in visceral pain under colitis condition. PURPOSE: This study aimed to investigate the effect and mechanism of DIM on visceral pain under colitis condition. METHODS: Cytotoxicity was performed using the MTT assay. RT-qPCR and ELISA assays were applied to determine the expression and release of algogenic substance P (SP), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Flow cytometry was used to examine the apoptosis and efferocytosis. The expression of Arg-1-arginine metabolism-related enzymes was detected using western blotting assays. ChIP assays were used to examine the binding of Nrf2 to Arg-1. Mouse models of dextran sulfate sodium (DSS) were established to illustrate the effect of DIM and validate the mechanism in vivo. RESULTS: DIM did not directly affect expressions and release of algogenic SP, NGF and BDNF in enteric glial cells (EGCs). However, when co-cultured with DIM-pre-treated RAW264.7 cells, the release of SP and NGF was decreased in lipopolysaccharides-stimulated EGCs. Furthermore, DIM increased the number of PKH67+ F4/80+ cells in the co-culture system of EGCs and RAW264.7 cells in vitro and alleviated visceral pain under colitis condition by regulating levels of SP and NGF as well as values of electromyogram (EMG), abdominal withdrawal reflex (AWR) and tail-flick latency (TFL) in vivo, which was significantly inhibited by efferocytosis inhibitor. Subsequently, DIM was found to down-regulate levels of intracellular arginine, up-regulate levels of ornithine, putrescine and Arg-1 but not extracellular arginine or other metabolic enzymes, and polyamine scavengers reversed the effect of DIM on efferocytosis and release of SP and NGF. Moving forward, Nrf2 transcription and the binding of Nrf2 to Arg-1-0.7 kb was enhanced by DIM, AhR antagonist CH223191 abolished the promotion of DIM on Arg-1 and efferocytosis. Finally, nor-NOHA validated the importance of Arg-1-dependent arginine metabolism in DIM-alleviated visceral pain. CONCLUSION: DIM enhances macrophage efferocytosis in an arginine metabolism-dependent manner via "AhR-Nrf2/Arg-1" signals and inhibits the release of SP and NGF to relieve visceral pain under colitis condition. These findings provide a potential therapeutic strategy for the treatment of visceral pain in patients with colitis.


Asunto(s)
Colitis , Dolor Visceral , Ratones , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Factor 2 Relacionado con NF-E2 , Factor Neurotrófico Derivado del Encéfalo , Dolor Visceral/tratamiento farmacológico , Factor de Crecimiento Nervioso , Macrófagos/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
10.
Mol Nutr Food Res ; 67(11): e2200755, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37002873

RESUMEN

SCOPE: The purpose of this research is to investigate the specific role of HSP90 paralogs in ulcerative colitis (UC), and to explore the mechanisms behind the inhibitory effects of galangin (Gal) on UC by inhibiting HSP90ß in vivo. METHODS AND RESULTS: In order to achieve this, publicly available gene expression data and molecular biology techniques are used. The results show that the expression of HSP90ß is significantly increased in the mucosal biopsies of UC patients and in the colons of colitis mice, and that there is a significant correlation between HSP90ß levels and disease severity. Then, Gal is found to bind directly to HSP90ß and downregulates the level of p-AKT, as well as the stability and oligomerization of HSP90ß, indicating Gal as an HSP90ß inhibitor. Moreover, the findings reveal that HSP90ß plays a critical role in controlling UC, and that Gal can alleviate colitis by inhibiting HSP90ß and perturbing fatty acid synthesis-mediated NLRP3 inflammasome activation. CONCLUSION: These results not only provide insight into the potential therapeutic use of Gal in the treatment of UC, but also offer new perspectives on the role of HSP90ß in this disease.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratones , Animales , Colitis Ulcerosa/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Colitis/genética , Ácidos Grasos , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL
11.
Environ Sci Pollut Res Int ; 30(25): 67087-67108, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37103695

RESUMEN

This study interprets enterprise pollution reduction from the perspective of the financial market. Using data on Chinese industrial enterprises, this paper tests the impacts of bank competition on enterprise pollution emissions. The findings show that bank competition has a significant total effect and technique effect on pollutant reduction. Bank competition reduces pollutant emissions by easing financing constraints, increasing the implementation of internal pollution control, and improving the efficiency of bank credit resource allocation. Further research shows that both bank type and bank branch level could moderate the pollution reduction effects and such effects vary a lot under different environmental regulation intensities. We expand the relevant literature on the economic consequences of banking competition and have certain theoretical and practical reference significance for the future reform of the banking industry.


Asunto(s)
Contaminantes Ambientales , Contaminación Ambiental , China , Industrias , Organizaciones
12.
Redox Biol ; 62: 102709, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116255

RESUMEN

Although metabolic reprogramming during the differentiation of regulatory T cells (Treg cells) has been extensively studied, the molecular switch to alter energy metabolism remains undefined. The present study explores the critical role of mitochondrial dynamics in the reprogramming and consequent generation of Treg cells. The results showed that during Treg cell differentiation, mitochondrial fusion but not fission led to elevation of oxygen consumption rate values, facilitation of metabolic reprogramming, and increase of number of Treg cells and expression of Foxp3 in vitro and in vivo. Mechanistically, mitochondrial fusion favored fatty acid oxidation but restricted glycolysis in Treg cells through down-regulating the expression of HIF-1α. Transforming growth factor-ß1 (TGF-ß1) played a crucial role in the induction of mitochondrial fusion, which activated Smad2/3, promoted the expression of PGC-1α and therefore facilitated the expression of mitochondrial fusion proteins. In conclusion, during Treg cell differentiation, TGF-ß1 promotes PGC-1α-mediated mitochondrial fusion, which drives metabolic reprogramming from glycolysis to fatty acid oxidation via suppressing HIF-1α expression, and therefore favors the generation of Treg cells. The signals and proteins involved in mitochondrial fusion are potential therapeutic targets for Treg cell-related diseases.


Asunto(s)
Linfocitos T Reguladores , Factor de Crecimiento Transformador beta1 , Linfocitos T Reguladores/metabolismo , Dinámicas Mitocondriales , Diferenciación Celular , Ácidos Grasos/metabolismo
13.
Mol Nutr Food Res ; 67(12): e2200784, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36938915

RESUMEN

SCOPE: Colonic mucosal healing is the terminal goal for the treatment of ulcerative colitis (UC), but there is currently no specific drug available. This study investigates the beneficial effect of diallyl trisulfide (DATS) on the colonic mucosal healing. METHODS AND RESULTS: Dextran sulfate sodium (DSS) is used to induce colitis in female C57BL/6 mice, and DATS is orally administered during the recovery period. DATS hardly impacts the inflammation of the colonic tissues, but significantly promotes the mucosal repair. DATS promotes the migration but not proliferation of colonic epithelial cells in the colitis mice. In addition, DATS accelerates the wound healing, cell migration, focal adhesion assembly, and phosphorylation of focal adhesion kinase (FAK) of colonic epithelial cells in vitro, which are evidently reversed by combined use of FAK inhibitor PF-573228. Similar results are shown in colitis mice. Mechanically, DATS promotes the binding of Rab21 to integrin ß1 and accelerates the endocytosis of integrin ß1, which is significantly attenuated by the knockdown of Rab21. CONCLUSIONS: DATS promotes the binding of Rab21 to integrin ß1 and the endocytosis of integrin ß1, thereby increases FAK phosphorylation and focal adhesion assembly, finally accelerates the migration of colonic epithelial cells and mucosal healing.


Asunto(s)
Colitis Ulcerosa , Colitis , Ajo , Femenino , Ratones , Animales , Integrina beta1/metabolismo , Integrina beta1/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Adhesiones Focales , Ratones Endogámicos C57BL , Movimiento Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Células Epiteliales/metabolismo
14.
Materials (Basel) ; 16(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36984111

RESUMEN

The plastic deformation behavior of a CHN327 nickel-based superalloy under temperatures ranging from 600 °C to 700 °C and strain rates ranging from 0.001 to 0.1 s-1 was investigated using uniaxial high-temperature tensile tests. The stress-strain curves obtained by the tests showed that the maximum stress decreased as the temperature increased, while it increased as the strain rate increased. Based on the extensive data obtained in the experiment, three constitutive models (Hollomon, Swift, and the modified Voce equation) were employed to predict the constitutive relation. It was found that the modified Voce equation had the highest correlation coefficient and the best prediction accuracy. Thereafter, in order to predict the fracture of CHN327 during high-temperature tensile deformation, five ductile fracture criteria (Freudenthal, C&L, Brozzo, Ayada, and the R&T model), and the modified Voce equation obtained were incorporated into the finite element software (DEFORM). According to the results, except for the C&L and Brozzo models, all of the other ductile fracture criteria (DFCs) were suitable for predicting the damage distribution of the CHN327 alloy in tensile tests. For all of the DFCs considered, the R&T model provided the most accurate predictions, whose mean error was only 8.9%, far less than the values that other models predicted.

15.
Immunology ; 169(4): 412-430, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36930164

RESUMEN

Several aryl hydrocarbon receptor (AhR) agonists have been reported to promote the generation of regulatory T cells (Treg cells), and the action mechanisms need to be identified. In this study, we addressed the underlying mechanism of AhR activation to induce the generation of Treg cells in the view of cellular metabolism. Naïve CD4+ T cells were purified with mouse CD4+ CD62L+ T Cells Isolation Kits. The proportions of Treg cells were detected by flow cytometry. The value of oxygen consumption rate (OCR) of CD4+ T cells was detected by the Seahorse XFe 96 analyzer. The activation of fatty acid oxidation (FAO)-related metabolic pathways was detected by Western blotting. Intracellular localization of Lkb1 was detected by immunofluorescence. The Strad-Mo25-Lkb1 complex formation and K63 chain ubiquitination modification of Lkb1 were detected by co-immunoprecipitation. The binding of AhR to the Skp2 promoter was detected by constructing luciferase reporter gene. AhR or carnitine palmitoyltransferases 1 was knockdown in dextran sulphate sodium (DSS)-induced colitis or collagen-induced arthritis (CIA) mice by infecting mice with adeno-associated virus via the tail vein injection. Compared to the control group, exogenous and endogenous AhR agonists 3,3'-diindolylmethane (DIM) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) were shown to preferentially upregulate the mRNA expression of FAO-related enzymes and the value of OCR. Consistently, pharmacological or genetic inhibition of FAO markedly diminished the induction of DIM and ITE on the differentiation of Treg cells. DIM and ITE functioned mainly through activating the liver kinase B1 (Lkb1)-AMPK pathway via promotion of Lkb1-Strad-Mo25 complex formation and Lkb1 K63 ubiquitination. DIM and ITE were also shown to upregulate the mRNA expression of Skp2, a ubiquitination-related enzyme, and facilitate the binding of AhR to the xenobiotic responsive element of Skp2 promoter region by luciferase reporter gene assay. Furthermore, the contribution of Skp2/K63 ubiquitination/Lkb1/FAO axis was verified in (DSS)-induced colitis or CIA mice. In summary, these findings indicate that AhR activation promotes Treg cell generation by enhancing Lkb1-mediated FAO via the Skp2/K63-ubiquitination pathway, and AhR agonists may be used as inducers of Treg cells to prevent and treat autoimmune diseases.


Asunto(s)
Colitis , Linfocitos T Reguladores , Ratones , Animales , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Colitis/metabolismo , Ubiquitinación , Ácidos Grasos/metabolismo , ARN Mensajero
16.
Asian J Psychiatr ; 82: 103498, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36758449

RESUMEN

BACKGROUND: Social anxiety disorder (SAD) is a prevalent and impairing mental disorder among children and adolescents. The bed nucleus of the stria terminalis (BNST) plays a critical role in anxiety disorders, including valence surveillance and hypervigilance for potential threats. However, the role of BNST and its related functional network in children and adolescents with SAD has not been fully investigated. This study examined the aberration of BNST's functional connectivity and its age dependence in adolescents with SAD. METHODS: Using a sample of 75 SAD patients and 75 healthy controls (HCs) children aged 9-18 years old, we delineated the group-by-age interaction of BNST-seeded functional connectivity (FC) during resting state and movie-watching. The relationships between BNST-seeded FC and clinical scores were also examined. RESULTS: During movie viewing, the FC between the right BNST and the left amygdala, bilateral posterior cingulate cortex (PCC), bilateral superior temporal cortex, and right pericalcarine cortex showed a diagnostic group-by-age interaction. Compared to HCs, SAD patients showed a significant enhancement of the above FC at younger ages. Meanwhile, they showed an age-dependent decrease in FC between the right BNST and left amygdala. Furthermore, for SAD patients, FC between the right BNST and left amygdala during movie viewing was positively correlated with separation anxiety scores. CONCLUSIONS: The right BNST plays an essential role in the aberrant brain functioning in children and adolescents with SAD. The atypicality of BNST's FC has remarkable age dependence in SAD, suggesting an association of SAD with neurodevelopmental traits.


Asunto(s)
Fobia Social , Núcleos Septales , Humanos , Adolescente , Niño , Núcleos Septales/diagnóstico por imagen , Imagen por Resonancia Magnética , Ansiedad , Amígdala del Cerebelo/diagnóstico por imagen
17.
Materials (Basel) ; 17(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38203961

RESUMEN

The seismic performance index of prefabricated structures is generally obtained via experimental analysis. However, in experimental research, it is impossible that every influencing factor can be taken into account. Therefore, the finite element analysis method can be used as a supplementary method for experimental research to carry out parametric analysis of joints. Based on this test, a hysteretic model of steel bars is developed on the ABAQUS platform; meanwhile, the model is used to simulate the seismic analysis of the proposed local reinforced joints. The hysteresis curve obtained via simulation exhibits a high degree of coincidence with the experimental results. Based on the validated model, a detailed parameter analysis of prefabricated local reinforced concrete frame joints is carried out. The analysis results illustrate that the axial pressure ratio at the top of the column has a minimal impact on the joint's performance. Decreasing the stirrup ratio within the core region, enlarging the diameter of the PC steel bar, and increasing the concrete strength that is poured in the keyway and the core region can raise the cumulative energy consumption of the joints, thereby reducing the damage degree of other units and improving the maximum bearing capability of the joints.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36542201

RESUMEN

Subcortical brain regions play essential roles in the pathology of social anxiety disorder (SAD). While adolescence is the peak period of SAD, the relationships between altered development of the subcortical regions during this period and SAD are still unclear. This study investigated the age-dependent alterations in structural co-variance among subcortical regions and between subcortical and cortical regions, aiming to reflect aberrant coordination during development in the adolescent with SAD. High-resolution T1-weighted images were obtained from 76 adolescents with SAD and 67 healthy controls (HC), ranging from 11 to 17.9 years. Symptom severity was evaluated with the Social Anxiety Scale for Children (SASC) and the Depression Self Rating Scale for Children (DSRS-C). Structural co-variance and sliding age-window analyses were used to detect age-dependent group differences in inter-regional coordination patterns among subcortical regions and between subcortical and cortical regions. The volume of the striatum significantly correlated with SAD symptom severity. The SAD group exhibited significantly enhanced structural co-variance among key regions of the striatum (putamen and caudate). While the co-variance decreased with age in healthy adolescents, the co-variance in SAD adolescents stayed high, leading to more apparent group differences in middle adolescence. Moreover, the striatum's mean structural co-variance with cortical regions decreased with age in HC but increased with age in SAD. Adolescents with SAD suffer aberrant developmental coordination among the key regions of the striatum and between the striatum and cortical regions. The degree of incoordination is age-dependent, which may represent a neurodevelopmental trait of SAD.

19.
Metabolites ; 12(10)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36295848

RESUMEN

Colitis-associated cancer (CAC), arising from long-lasting intestinal inflammation, is a common type of colorectal cancer. Sinomenine (SIN), the major active compound of Sinomenium acutum, displays excellent antitumor activity. In modern pharmacological research, SIN has been proved to arrest proliferation of human colon cancer cells in vitro, but its functional role and specific mechanism in CAC were still elusive. This study explored the molecular mechanism of SIN on CAC. The results showed that orally administered SIN could decrease the occurrence and development of CAC. Metabolomics results revealed SIN could reprogram metabolism in CAC mice by reversing 34 endogenous metabolites. Importantly, the most prominent metabolic alteration was lipid metabolism. Mechanistically, SIN improved lipid metabolism by enhancing the expression of CPT1A in CAC mice. Moreover, the inhibitory effect of SIN on the proliferation of human colon cancer cells was blunted via CPT1A inhibitor. The results of this study added further evidence of the molecular mechanisms that allow SIN to exert anti-CAC effect by facilitating lipid metabolism and reaffirmed its potential and distinctive role as a chemopreventive agent in CAC.

20.
Eur J Med Chem ; 244: 114845, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36274276

RESUMEN

The aryl hydrocarbon receptor (AhR), discovered 46 years ago, is a transcript factor member of the basic helix-loop-helix Per-ARNT-SIM (bHLH-PAS) family deeply implicated in health and diseases, and is traditionally associated with the metabolism of xenobiotic ligands. Recently, multiple and structurally diverse ingredients including amino acid metabolites, polyphenols, flavonoids, polyhydroxyalkanoates, polychlorinated biphenyls, and, triarylmethanes have been evaluated as AhR potential ligands, and there is increasing attention on AhR as an appealing target in various cancers, autoimmune disorders, inflammatory bowel diseases, rheumatoid arthritis and multiple sclerosis. Herein, this review focuses on the recent advances of AhR, covering articles published between 2002 and 2022. It summarizes the structure of AhR, regulation of the AhR pathway, physiological role, and AhR ligands, highlighting the vast opportunities and challenges for targeting drug development of AhR.


Asunto(s)
Receptores de Hidrocarburo de Aril , Química Farmacéutica , Ligandos , Bifenilos Policlorados/química , Receptores de Hidrocarburo de Aril/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...