Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 822
Filtrar
2.
Transl Oncol ; 45: 101988, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38733642

RESUMEN

Radiation is one of the standard therapies for pediatric high-grade glioma (pHGG), of which the prognosis remains poor. To gain an in-depth understanding of biological consequences beyond the classic DNA damage, we treated 9 patient-derived orthotopic xenograft (PDOX) models, including one with DNA mismatch repair (MMR) deficiency, with fractionated radiations (2 Gy/day x 5 days). Extension of survival time was noted in 5 PDOX models (P < 0.05) accompanied by γH2AX positivity in >95 % tumor cells in tumor core and >85 % in the invasive foci as well as ∼30 % apoptotic and mitotic catastrophic cell death. The model with DNA MMR (IC-1406HGG) was the most responsive to radiation with a reduction of Ki-67(+) cells. Altered metabolism, including mitochondria number elevation, COX IV activation and reactive oxygen species accumulation, were detected together with the enrichment of CD133+ tumor cells. The latter was caused by the entry of quiescent G0 cells into cell cycle and the activation of self-renewal (SOX2 and BMI1) and epithelial mesenchymal transition (fibronectin) genes. These novel insights about the cellular and molecular mechanisms of fractionated radiation in vivo should support the development of new radio-sensitizing therapies.

3.
Front Immunol ; 15: 1342350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720901

RESUMEN

Dyslipidemia is the most prevalent independent risk factor for patients with chronic kidney disease (CKD). Lipid-induced NLRP3 inflammasome activation in kidney-resident cells exacerbates renal injury by causing sterile inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox balance; however, the exact role of Nrf2 signaling and its regulation of the NLRP3 inflammasome in hyperlipidemia-induced kidney injury are poorly understood. In this study, we demonstrated that activation of the mtROS-NLRP3 inflammasome pathway is a critical contributor to renal tubular epithelial cell (RTEC) apoptosis under hyperlipidemia. In addition, the Nrf2/ARE signaling pathway is activated in renal tubular epithelial cells under hyperlipidemia conditions both in vivo and in vitro, and Nrf2 silencing accelerated palmitic acid (PA)-induced mtROS production, mitochondrial injury, and NLRP3 inflammasome activation. However, the activation of Nrf2 with tBHQ ameliorated mtROS production, mitochondrial injury, NLRP3 inflammasome activation, and cell apoptosis in PA-induced HK-2 cells and in the kidneys of HFD-induced obese rats. Furthermore, mechanistic studies showed that the potential mechanism of Nrf2-induced NLRP3 inflammasome inhibition involved reducing mtROS generation. Taken together, our results demonstrate that the Nrf2/ARE signaling pathway attenuates hyperlipidemia-induced renal injury through its antioxidative and anti-inflammatory effects through the downregulation of mtROS-mediated NLRP3 inflammasome activation.


Asunto(s)
Células Epiteliales , Hiperlipidemias , Inflamasomas , Túbulos Renales , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/complicaciones , Hiperlipidemias/inmunología , Células Epiteliales/metabolismo , Ratas , Humanos , Túbulos Renales/patología , Túbulos Renales/metabolismo , Masculino , Línea Celular , Apoptosis , Elementos de Respuesta Antioxidante , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Ratas Sprague-Dawley
4.
Ann Med ; 56(1): 2346537, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38696817

RESUMEN

BACKGROUND: To investigate the effectiveness of the intervention with critical value management and push short messaging service (SMS), and to determine improvement in the referral rate of patients with positive hepatitis C antibody (anti-HCV). METHODS: No intervention was done for patients with positive anti-HCV screening results from 1 January 2015 to 31 October 2021. Patients with positive anti-HCV results at our hospital from 1 November 2021 to 31 July 2022 were informed vide critical value management and push SMS. For inpatients, a competent physician was requested to liaise with the infectious disease physician for consultation, and patients seen in the OPD (outpatient department) were asked to visit the liver disease clinic. The Chi-square correlation test, one-sided two-ratio test and linear regression were used to test the relationship between intervention and referral rate. RESULTS: A total of 638,308 cases were tested for anti-hepatitis C virus (HCV) in our hospital and 5983 of them were positive. 51.8% of the referred patients were aged 18-59 years and 10.8% were aged ≥75 years. The result of Chi-square correlation test between intervention and referral was p = .0000, p < .05. One-sided two-ratio test was performed for statistics of pre-intervention referral rate (p1) and post-intervention referral rate (p2). Normal approximation and Fisher's exact test for the results obtained were 0.000, p < .05, and the alternative hypothesis p1 - p2 < 0 was accepted. The linear regression equation was referral = 0.1396 × intervention + 0.3743, and the result model p = 8.79e - 09, p < .05. The model was significant, and the coefficient of intervention was 0.1396. CONCLUSIONS: The interventions of critical value management and push SMS were correlated with the referral rate of patients with positive anti-HCV.


Asunto(s)
Hepatitis C , Derivación y Consulta , Humanos , Derivación y Consulta/estadística & datos numéricos , Persona de Mediana Edad , Masculino , Femenino , Adulto , Anciano , Adolescente , Hepatitis C/tratamiento farmacológico , Hepatitis C/diagnóstico , Adulto Joven , Anticuerpos contra la Hepatitis C/sangre , Envío de Mensajes de Texto , Mejoramiento de la Calidad
5.
Sci Total Environ ; : 173158, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735329

RESUMEN

Soil respiration (Rs) is a major component of the global carbon (C) cycle and is influenced by the availability of nutrients such as phosphorus (P). However, the response of Rs to P addition in P-limited subtropical forest ecosystems and the underlying mechanisms remain poorly understood. To address this, we conducted a P addition experiment (50 kg P ha-1 yr-1) in a subtropical Chinese fir (Cunninghamia lanceolata) plantation forest. We separated Rs into heterotrophic respiration (Rh), root respiration (Rr), and mycorrhizal hyphal respiration (Rm), and quantified soil properties, microbial biomass (phospholipid fatty acid, PLFA), fungal community composition (ITS), and the activity of extracellular enzymes. Phosphorus addition significantly increased Rs and Rh, but decreased Rr and did not influence Rm. Further, P addition increased fungal, bacterial, and total PLFAs, and phenol oxidase activity. Conversely, P application decreased root biomass and did not alter the relative abundance of symbiotrophic fungi. Phosphorus enrichment therefore enhances soil C emissions by promoting organic matter decomposition by heterotrophic activity, rather than via increases in root or mycorrhizal respiration. This advances our mechanistic understanding of the relationship between fertility and soil respiration in subtropical forests, with implications for predicting soil C emissions under global change.

6.
CNS Neurosci Ther ; 30(5): e14738, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38702933

RESUMEN

INTRODUCTION: Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia. In turn, microglia internalized and released exosomal α-syn, enhancing α-syn propagation. However, the specific mechanism through which PD-exo influences α-syn degradation remains unknown. METHODS: Exosomes were extracted from the plasma of patients with PD by differential ultracentrifugation, analyzed using electron microscopy (EM) and nanoparticle flow cytometry, and stereotaxically injected into the unilateral striatum of the mice. Transmission EM was employed to visualize lysosomes and autophagosomes in BV2 cells, and lysosome pH was measured with LysoSensor Yellow/Blue DND-160. Cathepsin B and D, lysosomal-associated membrane protein 1 (LAMP1), ATP6V1G1, tumor susceptibility gene 101 protein, calnexin, α-syn, ionized calcium binding adaptor molecule 1, and NLR family pyrin domain containing 3 were evaluated using quantitative polymerase chain reaction or western blotting, and α-syn, LAMP1, and ATP6V1G1 were also observed by immunofluorescence. Small interfering ribonucleic acid against V1G1 was transfected into BV2 cells and primary microglia using Lipofectamine® 3000. A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. A lentiviral-mediated strategy to overexpress ATP6V1G1 in the brain of MPTP-treated mice was employed. Motor coordination was assessed using rotarod and pole tests, and neurodegeneration in the mouse substantia nigra and striatum tissues was determined using immunofluorescence histochemical and western blotting of tyrosine hydroxylase. RESULTS: PD-exo decreased the expression of V1G1, responsible for the acidification of intra- and extracellular milieu. This impairment of lysosomal acidification resulted in the accumulation of abnormally swollen lysosomes and decreased lysosomal enzyme activities, impairing lysosomal protein degradation and causing α-syn accumulation. Additionally, V1G1 overexpression conferred the mice neuroprotection during MPTP exposure. CONCLUSION: Pathogenic protein accumulation is a key feature of PD, and compromised V-type ATPase dysfunction might participate in PD pathogenesis. Moreover, V1G1 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which may provide opportunities to develop novel therapeutic interventions for PD treatment.


Asunto(s)
Exosomas , Ratones Endogámicos C57BL , Microglía , Enfermedad de Parkinson , ATPasas de Translocación de Protón Vacuolares , alfa-Sinucleína , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , alfa-Sinucleína/metabolismo , Exosomas/metabolismo , Lisosomas/metabolismo , Microglía/metabolismo , Microglía/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética
7.
Int Immunopharmacol ; 133: 112036, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640713

RESUMEN

BACKGROUND: Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS: The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS: 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1ß). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION: Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.


Asunto(s)
Berberina , Biología Computacional , Lipocalina 2 , Simulación del Acoplamiento Molecular , FN-kappa B , Farmacología en Red , Encefalopatía Asociada a la Sepsis , Transducción de Señal , Animales , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , FN-kappa B/metabolismo , Ratones , Lipocalina 2/genética , Lipocalina 2/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Regulación hacia Abajo , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Sepsis/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Mapas de Interacción de Proteínas
8.
Medicine (Baltimore) ; 103(16): e37848, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640332

RESUMEN

OBJECTIVE: To investigate the clinical efficacy of fire acupuncture (FA) on plaque psoriasis (PP), exploring its suitable syndrome types, in order to achieve better therapeutic effects, accelerate the possibility of psoriasis skin lesion recovery, and provide assistance for clinical treatment. METHODS: A total of 8 patients with PP aged between 18 and 60 years were recruited and treated with FA once a week, and the lesion area and severity index (PASI), visual analog scale and pruritus were measured before, 2, 4 and 8 weeks after treatment and at the follow-up period (week 12), respectively. Visual analog scale, and dermoscopy were used for assessment. RESULTS: All patients showed improvement in pruritus after 1 FA treatment, and lesions were reduced to varying degrees after 2 weeks. Except for patients 5 and 8, who only achieved effective results due to severe disease, all other patients with psoriasis achieved significant results at 8 weeks after treatment. CONCLUSION: FA can significantly control the development of lesions, reduce the symptoms of PP lesions and pruritus, and help prevent psoriasis recurrence.


Asunto(s)
Terapia por Acupuntura , Psoriasis , Humanos , Lactante , Psoriasis/tratamiento farmacológico , Resultado del Tratamiento , Prurito/etiología , Prurito/terapia , Investigación , Índice de Severidad de la Enfermedad , Método Doble Ciego
9.
PeerJ ; 12: e17231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646477

RESUMEN

Ageratina adenophora is an invasive weed species found in many countries. Methods to control the spread of this weed have been largely unsuccessful. Soil pH is the most important soil factor affecting the availability of nutrients for plant and impacting its growth. Understanding the mechanisms of the influence of soil pH on the growth of A. adenophora may help to develop effective control measures. In this study, we artificially changed the soil pH in pot experiments for A. adenophora. We studied the effects of acidic (pH 5.5), weakly acidic (pH 6.5), neutral (pH 7.2), and alkaline (pH 9.0) soils on the growth, availability of soil nutrients, activity of antioxidant enzymes, levels of redox markers in the leaves, and the structure and diversity of the rhizosphere microbiome. Soil with a pH 7.2 had a higher (47.8%) below-ground height versus soils of pH 5.5 at day 10; plant had a higher (11.3%) above-ground height in pH 7.2 soils than pH 9.0 soils at day 90; no differences in the fresh and dry weights of its above- and belowground parts, plant heights, and root lengths were observed in plants growing in acid, alkaline, or neutral pH soil were observed at day 180. Correspondingly, the antioxidant enzymes SOD (superoxide dismutase), POD (peroxidase), CAT (catalase) and redox markers GSH (glutathione) and MDA (malondialdehyde) were measured in the leaves. Significant differences existed in the activities of CAT and the levels of GSH between those growing in acidic and alkaline soils and those in neutral pH soil at day 90; however, only lower (36.8%) CAT activities in those grown at pH 5.5 than those grown at pH 7.2 were found at day 180. Similarly, significant differences in available P (16.89 vs 3.04 mg Kg-1) and total K (3.67 vs 0.96 mg Kg-1), total P (0.37 vs 0.25 g Kg-1) and total N (0.45 vs 1.09 g Kg-1) concentrations were found between the rhizosphere soils of A. adenophora grown at pH 9.0 and 7.2 at day 90; no such differences were seen at day 180. High throughput analyses of the 16S rRNA and ITS fragments showed that the rhizosphere microbiome diversity and composition under different soil pH conditions changed over 180 days. The rhizosphere microbiomes differed in diversity, phylum, and generic composition and population interactions under acid and alkaline conditions versus those grown in neutral soils. Soil pH had a greater impact on the diversity and composition of the prokaryotic rhizosphere communities than those of the fungal communities. A. adenophora responded successfully to pH stress by changing the diversity and composition of the rhizosphere microbiome to maintain a balanced nutrient supply to support its normal growth. The unusual pH tolerance of A. adenophora may be one crucial reason for its successful invasion. Our results suggest that attempts use soil pH to control its invasion by changing the soil pH (for example, using lime) will fail.


Asunto(s)
Ageratina , Microbiota , Rizosfera , Microbiología del Suelo , Suelo , Concentración de Iones de Hidrógeno , Microbiota/fisiología , Suelo/química , Ageratina/química , Hojas de la Planta/microbiología , Hojas de la Planta/química , Malezas/química , Malezas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Antioxidantes/metabolismo , Antioxidantes/análisis
10.
Heliyon ; 10(7): e28423, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38623237

RESUMEN

Diets with high carbohydrate (HC) was reported to have influence on appetite and intermediary metabolism in fish. To illustrate whether betaine could improve appetite and glucose-lipid metabolism in aquatic animals, mandarin fish (Siniperca chuatsi) were fed with the HC diets with or without betaine for 8 weeks. The results suggested that betaine enhanced feed intake by regulating the hypothalamic appetite genes. The HC diet-induced downregulation of AMPK and appetite genes was also positively correlated with the decreased autophagy genes, suggesting a possible mechanism that AMPK/mTOR signaling might regulate appetite through autophagy. The HC diet remarkably elevated transcriptional levels of genes related to lipogenesis, while betaine alleviated the HC-induced hepatic lipid deposition. Additionally, betaine supplementation tended to store the energy storage as hepatic glycogen. Our findings proposed the possible mechanism for appetite regulation through autophagy via AMPK/mTOR, and demonstrated the feasibility of betaine as an aquafeed additive to regulate appetite and intermediary metabolism in fish.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38619765

RESUMEN

We studied 34 isolates of Tigecycline-Non-Susceptible A. baumannii (TNAB) obtained from clinical specimens at a large tertiary care hospital in Chongqing, China. These 34 strains belonged to 8 different clones including ST195 (35.3%) and ST208 (17.7%). EBURST analysis found that these 8 ST types belonged to the Clonal Complex 92. Tigecycline resistance-associated genes adeR, adeS, adeL, adeN, rrf, rpsJ, and trm were detected in most strains. The expression level of the resistance-nodulation-cell division (RND) efflux pumps in TNAB strains was higher than the reference strain ATCC19606. 58.8% of strains had a decrease in the tigecycline minimum inhibitory concentration (MIC) after the addition of carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The TNAB strains in our hospital have a high degree of affinity and antibiotic resistance. Regular surveillance should be conducted to prevent outbreaks of TNAB epidemics.

12.
Front Oncol ; 14: 1286426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571492

RESUMEN

Familial non-medullary thyroid carcinoma (FNMTC) is a type of thyroid cancer characterized by genetic susceptibility, representing approximately 5% of all non-medullary thyroid carcinomas. While some cases of FNMTC are associated with familial multi-organ tumor predisposition syndromes, the majority occur independently. The genetic mechanisms underlying non-syndromic FNMTC remain unclear. Initial studies utilized SNP linkage analysis to identify susceptibility loci, including the 1q21 locus, 2q21 locus, and 4q32 locus, among others. Subsequent research employed more advanced techniques such as Genome-wide Association Study and Whole Exome Sequencing, leading to the discovery of genes such as IMMP2L, GALNTL4, WDR11-AS1, DUOX2, NOP53, MAP2K5, and others. But FNMTC exhibits strong genetic heterogeneity, with each family having its own pathogenic genes. This is the first article to provide a chromosomal landscape map of susceptibility genes associated with non-syndromic FNMTC and analyze their potential associations. It also presents a detailed summary of variant loci, characteristics, research methodologies, and validation results from different countries.

13.
Acta Pharmacol Sin ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589689

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is closely associated with metabolic derangement. Sodium glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) exert anti-HFpEF effects, but the underlying mechanisms remain unclear. In this study, we explored the anti-HFpEF effects of empagliflozin and liraglutide and the underlying molecular mechanisms in a mouse model of HFpEF. This model was established by high-fat diet (HFD) feeding plus Nω-nitro-L-arginine methyl ester (L-NAME) treatment. The mice were treated with empagliflozin (20 mg·kg-1·d-1, i.g.) or liraglutide (0.3 mg·kg-1·d-1, i.p.) or their combination for 4 weeks. At the end of the experimental protocol, cardiac function was measured using ultrasound, then mice were euthanized and heart, liver, and kidney tissues were collected. Nuclei were isolated from frozen mouse ventricular tissue for single-nucleus RNA-sequencing (snRNA-seq). We showed that administration of empagliflozin or liraglutide alone or in combination significantly improved diastolic function, ameliorated cardiomyocyte hypertrophy and cardiac fibrosis, as well as exercise tolerance but no synergism was observed in the combination group. Furthermore, empagliflozin and/or liraglutide lowered body weight, improved glucose metabolism, lowered blood pressure, and improved liver and kidney function. After the withdrawal of empagliflozin or liraglutide for 1 week, these beneficial effects tended to diminish. The snRNA-seq analysis revealed a subcluster of myocytes, in which Erbb4 expression was down-regulated under HFpEF conditions, and restored by empagliflozin or liraglutide. Pseudo-time trajectory analysis and cell-to-cell communication studies confirmed that the Erbb4 pathway was a prominent pathway essential for both drug actions. In the HFpEF mouse model, both empagliflozin and liraglutide reversed Erbb4 down-regulation. In rat h9c2 cells, we showed that palmitic acid- or high glucose-induced changes in PKCα and/or ERK1/2 phosphorylation at least in part through Erbb4. Collectively, the single-cell atlas reveals the anti-HFpEF mechanism of empagliflozin and liraglutide, suggesting that Erbb4 pathway represents a new therapeutic target for HFpEF. Effects and mechanisms of action of empagliflozin and liraglutide in HFpEF mice. HFpEF was induced with a high-fat diet and L-NAME for 15 weeks, and treatment with empagliflozin and liraglutide improved the HFpEF phenotype. Single nucleus RNA sequencing (snRNA-seq) was used to reveal the underlying mechanism of action of empagliflozin and liraglutide.

14.
Sci Total Environ ; 929: 172704, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663590

RESUMEN

Both water management measures like damming and changes in precipitation as a result of anthropogenic induced climate change have exerted profound effects on the dynamics of streamwater-groundwater interaction (SGI). However, their compound effects on SGI have not been investigated so far. Taking the Fen River of China as an example, this study aims to examine the synergistic impacts of damming and precipitation anomalies on SGI dynamics. The sampling considered the seasonal and interannual variability of precipitation (May and September in 2019 representing a dry year; May and August in 2021 representing a wet year), and long-term daily observational data, including water levels and water discharge, were combined to elucidate the compound effects. Precipitation anomalies and damming exert significant individual and combined influences on SGI. Separately, dams and reservoirs reversed the SGI dynamics, significantly increasing the contributions of streamwater to groundwater from 0 to 29 % to 78 % in the dam-affected areas. Further, the groundwater discharge ratios behind the dam (about 60 %) were three times higher than those in front of the dam. Precipitation anomalies significantly amplified interannual variability in SGI patterns, and groundwater discharge ratios increased by 47 % during the dry period (2019) compared to flood period (2021). The combined influence of precipitation anomalies and dam regulation remarkably changed the lateral, vertical, and longitudinal water exchange dynamics. Precipitation anomalies affected the SGI dynamics at the whole watershed scale, whereas dam regulation regimes exhibited a stronger control at the local scale. The compound effects of dam regulation and precipitation anomalies can result in different SGI patterns under various climate scenarios. More attention should be paid to the interrelated feedback mechanisms between damming, extreme precipitation events, and their impact on the watershed-scale hydrological cycle.

15.
Ying Yong Sheng Tai Xue Bao ; 35(2): 330-338, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523089

RESUMEN

Soil aggregates are important for the storage and availability of phosphorus in the soil. However, how forest regeneration types affect phosphorus fractions of soil aggregates remains unclear. In this study, we examined the composition of aggregate particle size, phosphorus fractions, phosphorus sorption capacity index (PSOR), legacy phosphorus index (PLGC) and degree of phosphorus saturation by Mehlich 3 (DPSM3) in bulk soils and soil aggregates of Castanopsis carlesii secondary forest (slight disturbance), C. carlesii human-assisted regeneration forest (moderate disturbance), and Cunninghamia lanceolata plantation (severe disturbance), aiming to explore the impact of forest regeneration types on phosphorus availability and supply potential of bulk soils and soil aggregates. The results showed that forest regeneration types significantly influenced the composition of soil aggregates. The proportion of coarse macroaggregates (>2 mm) in the soil of C. carlesii secondary forest and human-assisted regeneration forest was significantly higher than that in the C. lanceolata plantation, while the proportion of silt and clay fraction (<0.053 mm) showed an opposite trend. The composition of soil aggregates significantly affected the contents of different phosphorus fractions. The contents of soil labile phosphorus fractions (PSOL and PM3) decreased as aggregate particle size decreased. The contents of soil total phosphorus (TP), total organic phosphorus (Po), mode-rately labile phosphorus fractions (PiOH and PoOH), and occluded phosphorus (POCL), as well as PSOR and PLGC, exhibited a trend of decreasing at the beginning and then increasing as particle size decreased. The contents of TP, Po, and PiOH in coarse and silt macroaggregates was significantly higher than that in fine macroaggregates (0.25-2 mm) and microaggregates (0.053-0.25 mm). Forest regeneration types significantly influenced the contents of phosphorus fractions of bulk soils and soil aggregates. The contents of TP, Po, PSOL, and PM3 in the soil of C. carlesii secondary forests was significantly higher than that in C. carlesii human-assisted regeneration forest and C. lanceolata plantation. The contents of PSOL and PM3 in different-sized aggregates of C. carlesii secondary forests were significantly higher than that in the C. lanceolata plantation. Forest regeneration types significantly influenced the composition and supply potential of phosphorus fractions in soil aggregates. The proportions of PSOL, and PM3 to TP in different-sized soil aggregates were significantly lower in C. carlesii human-assisted regeneration forest compared with C. carlesii secondary forest. PSOR and DPSM3 in different-sized soil aggregates were significantly lower in C. lanceolata plantation than that in C. carlesii secondary forest. Overall, our results indicated that natural regeneration is more favorable for maintaining soil phosphorus availability, and that forest regeneration affects soil phosphorus availa-bility and its supply potential by altering the composition of soil aggregates.


Asunto(s)
Fagaceae , Suelo , Humanos , Fósforo , Bosques , Arcilla , China , Carbono/análisis
16.
Exp Neurol ; 376: 114757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508481

RESUMEN

The intricate functional interactions between mitochondria and lysosomes play a pivotal role in maintaining cellular homeostasis and proper cellular functions. This dynamic interplay involves the exchange of molecules and signaling, impacting cellular metabolism, mitophagy, organellar dynamics, and cellular responses to stress. Dysregulation of these processes has been implicated in various neurodegenerative diseases. Additionally, mitochondrial-lysosomal crosstalk regulates the exosome release in neurons and glial cells. Under stress conditions, neurons and glial cells exhibit mitochondrial dysfunction and a fragmented network, which further leads to lysosomal dysfunction, thereby inhibiting autophagic flux and enhancing exosome release. This comprehensive review synthesizes current knowledge on mitochondrial regulation of cell death, organelle dynamics, and vesicle trafficking, emphasizing their significant contributions to neurodegenerative diseases. Furthermore, we explore the emerging field of nanomedicine in the management of neurodegenerative diseases. The review provides readers with an insightful overview of nano strategies that are currently advancing the mitochondrial-lysosome-extracellular vesicle axis as a therapeutic approach for mitigating neurodegenerative diseases.


Asunto(s)
Vesículas Extracelulares , Lisosomas , Mitocondrias , Enfermedades Neurodegenerativas , Humanos , Lisosomas/metabolismo , Vesículas Extracelulares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mitocondrias/metabolismo , Animales , Nanomedicina Teranóstica/métodos
17.
Nat Immunol ; 25(4): 659-670, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499799

RESUMEN

Combination therapy is a promising therapeutic strategy to enhance the efficacy of immune checkpoint blockade (ICB); however, predicting drugs for effective combination is challenging. Here we developed a general data-driven method called CM-Drug for screening compounds that can boost ICB treatment efficacy based on core and minor gene sets identified between responsive and nonresponsive samples in ICB therapy. The CM-Drug method was validated using melanoma and lung cancer mouse models, with combined therapeutic efficacy demonstrated in eight of nine predicted compounds. Among these compounds, taltirelin had the strongest synergistic effect. Mechanistic analysis and experimental verification demonstrated that taltirelin can stimulate CD8+ T cells and is mediated by the induction of thyroid-stimulating hormone. This study provides an effective and general method for predicting and evaluating drugs for combination therapy and identifies candidate compounds for future ICB combination therapy.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Animales , Ratones , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Neoplasias Pulmonares/tratamiento farmacológico
18.
Arch Biochem Biophys ; 754: 109945, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395121

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) poses a significant threat to patients with coronary heart disease. Adenosine A2A receptors have been known as a protective role in MIRI by regulating autophagy, so we assumed that activation of adenosine A2B receptor (A2BAR) might exert a similar effect during MIRI and underlying mechanism be related to proteostasis maintenance as well. In situ hearts were subjected to 30 min of ischemia and 120 min of reperfusion (IR), while invitro cardiomyocytes from neonatal rats experienced 6 h of oxygen-glucose deprivation followed by 12 h of reoxygenation (OGDR). Initially, we observed that post-ischemia-reperfusion induced autophagy flux blockade and ERS both in vivo and in vitro, evident through the increased expression of p62, LC3II, and BIP, which indicated the deteriorated proteostasis. We used a selective A2BAR agonist, Bay 60-6583, to explore the positive effects of A2BAR on cardiomyocytes and found that A2BAR activation rescued damaged cardiac function and morphological changes in the IR group and improved frail cell viability in the OGDR group. The A2BAR agonist also alleviated the blockage of autophagic flux, coupled with augmented ERS in the IR/OGDR group, which was reassured by using an autophagy inhibitor chloroquine (CQ) and ERS inhibitor (4-PBA) in vitro. Additionally, considering cAMP/PKA as a well-known downstream effector of A2BAR, we utilized H89, a selective PKA inhibitor. We observed that the positive efficacy of Bay 60-6583 was inhibited by H89. Collectively, our findings demonstrate that the A2BAR/cAMP/PKA signaling pathway exerts a protective role in MIRI by mitigating impaired autophagic flux and excessive ERS.


Asunto(s)
Aminopiridinas , Isoquinolinas , Daño por Reperfusión Miocárdica , Sulfonamidas , Humanos , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Receptor de Adenosina A2B/metabolismo , Miocitos Cardíacos/metabolismo , Autofagia , Isquemia/metabolismo , Estrés del Retículo Endoplásmico , Apoptosis
19.
Thyroid ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38411500

RESUMEN

Background: Familial non-medullary thyroid carcinoma (FNMTC) is a genetically predisposed disease with unclear genetic mechanisms. This makes research on susceptibility genes important for the diagnosis and treatment options. Methods: This study included a five-member family affected by papillary thyroid carcinoma. The candidate genes were identified through whole-exome sequencing and Sanger sequencing in family members, other FNMTC patients, and sporadic non-medullary thyroid carcinoma patients. The pathogenicity of the mutation was predicted using in silico tools. Cell phenotype experiments in vitro and models of lung distant metastasis in vivo were conducted to confirm the characteristics of the mutation. Transcriptome sequencing and mechanistic validation were employed to compare the disparities between PAK4 wild-type (WT) and PAK4 mutant (MUT) cell lines. Results: This mutation alters the protein structure, potentially increasing instability by affecting hydrophobicity, intra-molecular hydrogen bonding, and phosphorylation sites. It specifically promotes phosphorylated PAK4 nuclear translocation and expression in thyroid tissue and cell lines. Compared with the WT cells line, PAK4 I417T demonstrates enhanced proliferation, invasiveness, accelerated cell division, and inhibition of cell apoptosis in vitro. In addition, it exhibits a significant propensity for metastasis in vivo. It activates tumor necrosis factor signaling through increased phosphorylation of PAK4, JNK, NFκB, and c-Jun, unlike the WT that activates it via the PAK4-NFκ-MMP9 axis. In addition, PAK4 MUT protein interacts with matrix metalloproteinase (MMP)3 and regulates MMP3 promoter activity, which is not observed in the WT. Conclusions: Our study identified PAK4: c.T1250C: p.I417T as a potential susceptibility gene for FNMTC. The study concludes that the mutant form of PAK4 exhibits oncogenic function, suggesting its potential as a novel diagnostic molecular marker for FNMTC.

20.
Adv Sci (Weinh) ; 11(14): e2307143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308097

RESUMEN

Photodynamic therapy (PDT) is a minimally invasive and controllable local cancer treatment for cholangiocarcinoma (CCA). However, the efficacy of PDT is hindered by intratumoral hypoxia and the presence of an antioxidant microenvironment. To address these limitations, combining PDT with gas therapy may be a promising strategy to enhance tumor oxygenation. Moreover, the augmentation of oxidative damage induced by PDT and gas therapy can be achieved by inhibiting NRF2, a core regulatory molecule involved in the antioxidant response. In this study, an integrated nanotherapeutic platform called CMArg@Lip, incorporating PDT and gas therapies using ROS-responsive liposomes encapsulating the photosensitizer Ce6, the NO gas-generating agent L-arginine, and the NRF2 inhibitor ML385, is successfully developed. The utilization of CMArg@Lip effectively deals with challenges posed by tumor hypoxia and antioxidant microenvironment, resulting in elevated levels of oxidative damage and subsequent induction of ferroptosis in CCA. Additionally, these findings suggest that CMArg@Lip exhibits notable immunomodulatory effects, including the promotion of immunogenic cell death and facilitation of dendritic cell maturation. Furthermore, it contributes to the anti-tumor function of cytotoxic T lymphocytes through the downregulation of PD-L1 expression in tumor cells and the activation of the STING signaling pathway in myeloid-derived suppressor cells, thereby reprogramming the immunosuppressive microenvironment via various mechanisms.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Colangiocarcinoma/tratamiento farmacológico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...